Doppler Fourier Domain Optical Coherence Tomography for Label-Free Tissue Angiography

[1]  Wolfgang Drexler,et al.  In situ structural and microangiographic assessment of human skin lesions with high-speed OCT , 2012, Biomedical optics express.

[2]  R. Leitgeb,et al.  Ultrahigh-speed non-invasive widefield angiography. , 2012, Journal of biomedical optics.

[3]  Bernard Choi,et al.  High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography , 2012, Optics express.

[4]  Shuichi Makita,et al.  Variable velocity range imaging of the choroid with dual-beam optical coherence angiography. , 2012, Optics express.

[5]  R. Leitgeb,et al.  Extended focus high-speed swept source OCT with self-reconstructive illumination. , 2011, Optics express.

[6]  T. Gambichler,et al.  Optical coherence tomography in dermatology: technical and clinical aspects , 2011, Archives of Dermatological Research.

[7]  Edmund Koch,et al.  Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement , 2011, European Conference on Biomedical Optics.

[8]  Daniel M. Schwartz,et al.  In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography , 2011, Biomedical optics express.

[9]  Martin J Leahy,et al.  Cellular phone‐based photoplethysmographic imaging , 2011, Journal of biophotonics.

[10]  Martin Leahy,et al.  In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT) , 2011, Biomedical optics express.

[11]  Christian Ahlers,et al.  Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension , 2011, Biomedical optics express.

[12]  Byeong Ha Lee,et al.  Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography , 2011, Biomedical optics express.

[13]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[14]  Ruikang K. Wang,et al.  In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography , 2011, Lasers in surgery and medicine.

[15]  R. Leitgeb,et al.  Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. , 2011, Optics express.

[16]  M. Leahy,et al.  Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images , 2010, Journal of biophotonics.

[17]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.

[18]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[19]  Boris Povazay,et al.  Multispectral in vivo three-dimensional optical coherence tomography of human skin. , 2010, Journal of biomedical optics.

[20]  Maciej Wojtkowski,et al.  Scanning protocols dedicated to smart velocity ranging in spectral OCT. , 2009, Optics express.

[21]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[22]  M. Wojtkowski,et al.  Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. , 2009, Optics express.

[23]  Anna Szkulmowska,et al.  Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[24]  Christoph Kolbitsch,et al.  Histogram‐based filtering for quantitative 3D retinal angiography , 2009, Journal of biophotonics.

[25]  Ton G van Leeuwen,et al.  Doppler calibration method for Spectral Domain OCT spectrometers , 2009, Journal of biophotonics.

[26]  M. Wojtkowski,et al.  Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[27]  Christoph Kolbitsch,et al.  Ultra-high-speed volumetric tomography of human retinal blood flow. , 2009, Optics express.

[28]  Leopold Schmetterer,et al.  Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. , 2008, Optics letters.

[29]  Yuankai K. Tao,et al.  Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. , 2008, Optics express.

[30]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[31]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[32]  M. Wojtkowski,et al.  Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. , 2008, Optics express.

[33]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[34]  David Huang,et al.  Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. , 2007, Optics letters.

[35]  R. Leitgeb,et al.  Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. , 2007, Optics express.

[36]  R. Leitgeb,et al.  Extended focus depth for Fourier domain optical coherence microscopy. , 2006, Optics letters.

[37]  J. Duker,et al.  Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. , 2005, Ophthalmology.

[38]  U. Schmidt-Erfurth,et al.  Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. , 2005, Investigative ophthalmology & visual science.

[39]  J. Barton,et al.  Flow measurement without phase information in optical coherence tomography images. , 2005, Optics express.

[40]  S. Yun,et al.  Phase-resolved optical frequency domain imaging. , 2005, Optics express.

[41]  S. Yun,et al.  Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. , 2005, Optics express.

[42]  W. Drexler,et al.  In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. , 2005, Optics express.

[43]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[44]  Maciej Wojtkowski,et al.  Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. , 2004, Optics letters.

[45]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[46]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[47]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[48]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[49]  Quing Zhu,et al.  Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography. , 2003, Applied optics.

[50]  Yonghong He,et al.  Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography. , 2003, Optics letters.

[51]  Quing Zhu,et al.  Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography. , 2003, Optics letters.

[52]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[53]  Julius Pekar,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance. , 2003, Optics express.

[54]  J. Izatt,et al.  In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. , 2003, Archives of ophthalmology.

[55]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[56]  Maciej Wojtkowski,et al.  Flow velocity measurements by frequency domain short coherence interferometry , 2002, SPIE BiOS.

[57]  Zhongping Chen,et al.  Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography , 2001 .

[58]  M S Feld,et al.  Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics. , 2001, Optics letters.

[59]  J. Izatt,et al.  Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. , 2000, Optics letters.

[60]  J. D. de Boer,et al.  Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. , 2000, Optics letters.

[61]  J W Baish,et al.  Fractals and cancer. , 2000, Cancer research.

[62]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[63]  M. Wolzt,et al.  Ocular blood flow and associated functional deviations in diabetic retinopathy , 1999, Diabetologia.

[64]  E. Friedman A hemodynamic model of the pathogenesis of age-related macular degeneration. , 1997, American journal of ophthalmology.

[65]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[66]  B L Petrig,et al.  Choroidal blood flow in the foveal region of the human ocular fundus. , 1994, Investigative ophthalmology & visual science.

[67]  R. Nossal,et al.  Model for laser Doppler measurements of blood flow in tissue. , 1981, Applied optics.

[68]  R. Furchgott,et al.  The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine , 1980, Nature.

[69]  M. Lie,et al.  Local Regulation of Vascular Cross Section during Changes in Femoral Arterial Blood Flow in Dogs , 1970, Circulation research.

[70]  R. Leitgeb Chapter 3 - Current Technologies for High-Speed and Functional Imaging with Optical Coherence Tomography , 2011 .

[71]  Lingfeng Yu,et al.  Doppler variance imaging for three-dimensional retina and choroid angiography. , 2010, Journal of biomedical optics.

[72]  Giuseppe Argenziano,et al.  Dermatoscopy of basal cell carcinoma: morphologic variability of global and local features and accuracy of diagnosis. , 2010, Journal of the American Academy of Dermatology.

[73]  J. Goodman Statistical Optics , 1985 .