Lower Extremity Biomechanical Demands During Saut de Chat Leaps.

In dance, high demands are placed on the lower extremity joints during jumping tasks. The purpose of this study was to compare biomechanical demands placed on the lower extremity joints during the takeoff and landing phases of saut de chat leaps. METHODS Thirty healthy, experienced dancers with 20.8±4.9 yrs of dance training performed 5 saut de chat leaps. A three-dimensional motion analysis system and force plates were used to collect kinematic and kinetic data. Ground reaction force (GRF) peaks and impulse and sagittal plane kinematics and kinetics of the hip, knee, ankle, and metatarsophalangeal (MTP) joints were calculated for the takeoff and landing phases of each leap. RESULTS Saut de chat takeoffs demonstrated greater braking GRF impulse (p<0.001), while landings demonstrated greater peak vertical GRF (p<0.001). During takeoff, greater kinetic demands were placed on the MTP (p<0.001) and ankle (p<0.001) joints, while during landing greater kinetic demands were placed on the hip (p=0.037) joint. CONCLUSIONS Both the takeoff and landing phases of saut de chat leaps place significant demands on a dancer's body. Takeoff involves greater demands on the more distal joints and requires more braking forces, while the landing phase involves greater demands on the more proximal joints of the lower extremity and requires the dancer to absorb more vertical force. These demands, combined with extensive repetition of movements during training, may contribute to the high number of chronic injuries seen in dance.