Large Topological Cliques in Graphs Without a 4-Cycle

Mader asked whether every $C_4$-free graph $G$ contains a subdivision of a complete graph whose order is at least linear in the average degree of $G$. We show that there is a subdivision of a complete graph whose order is almost linear. More generally, we prove that every $K_{s,t}$-free graph of average degree $r$ contains a subdivision of a complete graph of order $r^{\frac{1}{2}{+}\frac{1}{2(s-1)}-o(1)}$.

[1]  Daniela Kühn,et al.  Topological Minors in Graphs of Large Girth , 2002, J. Comb. Theory, Ser. B.

[2]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[3]  Daniela Kühn,et al.  Complete Minors In Ks,s-Free Graphs , 2004, Comb..

[4]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[5]  Ronald L. Graham,et al.  Erdős on Graphs , 2020 .

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  JANOS KOMLOS,et al.  Topological cliques in graphs II , 1994, Combinatorics, Probability and Computing.

[8]  Daniela Kühn,et al.  Subdivisions of Kr+2 in Graphs of Average Degree at Least r+epsilon and Large but Constant Girth , 2004, Comb. Probab. Comput..

[9]  Ervin Györi C6-free bipartite graphs and product representation of squares , 1997, Discret. Math..

[10]  Daniela Kühn,et al.  Minors in graphs of large girth , 2003, Random Struct. Algorithms.

[11]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[12]  Wolfgang Mader Subdivisions of a Graph of Maximal Degree n + 1 in Graphs of Average Degree and Large Girth , 2001, Comb..

[13]  Wolfgang Mader,et al.  Topological Subgraphs in Graphs of Large Girth , 1998, Comb..

[14]  Lajos Rónyai,et al.  Norm-graphs and bipartite turán numbers , 1996, Comb..

[15]  W. Mader,et al.  An extremal problem for subdivisions of K - 5 , 1999 .

[17]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.

[18]  H. Jung Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen , 1970 .

[19]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[20]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..