Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta

[1] Application of an astronomical age model to a bulk carbonate oxygen isotope record in the Ras il Pellegrin section on Malta indicates that the major step in the middle Miocene global cooling (13.82 Ma ± 0.03) coincides with minimum eccentricity values associated with the 400-kyr cycle and minimum obliquity amplitudes associated with the 1.2-Myr cycle. This orbital configuration is very similar to that found for comparable oxygen isotope enrichment events in the late Paleogene and Neogene. The stepwise character of the middle Miocene cooling event appears to be controlled by the combined influence of the 100-kyr eccentricity cycle and the 172-kyr cycle in obliquity amplitude. The integrated stratigraphy further allows extension of the astronomical polarity timescale to the top of chron C5ACn. The boundary between the Globigerina Limestone and the Blue Clay Formation coincides with the major step in middle Miocene global cooling and provides a level suitable for placing the physical reference point for the Langhian/Serravallian boundary.

[1]  L. Lourens,et al.  Long-periodic variations in the earth's obliquity and their relation to third-order eustatic cycles and late Neogene glaciations , 1997 .

[2]  T. Adatte,et al.  Mixed carbonate-siliciclastic record on the North African margin (Malta)—coupling of weathering processes and mid Miocene climate , 2003 .

[3]  K. Miller,et al.  45. MIOCENE STABLE ISOTOPE STRATIGRAPHY, SITE 747, KERGUELEN PLATEAU1 , 1992 .

[4]  Michael A. Arthur,et al.  Miocene evolution of atmospheric carbon dioxide , 1999 .

[5]  W. Krijgsman,et al.  Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle–Upper Miocene, northern Italy) , 2003 .

[6]  H. Pälike,et al.  Oligocene climate dynamics , 2004 .

[7]  S. Savin,et al.  Mid‐Miocene isotope stratigraphy in the deep sea: High‐resolution correlations, paleoclimatic cycles, and sediment preservation , 1991 .

[8]  K. McClay,et al.  Stratigraphy and structure of the Maltese graben system , 1993, Journal of the Geological Society.

[9]  M. Raymo,et al.  Tectonic forcing of late Cenozoic climate , 1992, Nature.

[10]  D. Beerling,et al.  Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary. , 2001, Science.

[11]  Richard G. Bromley Trace Fossils:Biology and Taphonomy , 1990 .

[12]  B. Flower,et al.  Middle Miocene ocean-climate transition: High resolution oxygen and carbon isotopic records from Dee , 1993 .

[13]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[14]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[15]  G. Shields,et al.  The Monterey Event in the Mediterranean: A record from shelf sediments of Malta , 1996 .

[16]  Pascal Yiou,et al.  Macintosh Program performs time‐series analysis , 1996 .

[17]  R. Felix Oligo-Miocene stratigraphy of Malta and Gozo , 1973 .

[18]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[19]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[20]  S. Mazzola,et al.  ASTRONOMICAL CALIBRATION OF THE UPPER LANGHIAN/LOWERSERRAVALLIAN RECORD OF RAS IL PELLEGRIN SECTION (MALTA ISLAND, CENTRAL MEDITERRANEAN) , 2002 .

[21]  A. Bellanca,et al.  EVOLUTION OF THE MEDITERRANEAN BASIN DURING THE LATE LANGHIAN - EARLY SERRAVALLIAN: AN INTEGRATED PALEOCEANOGRAPHIC APPROACH , 2002 .

[22]  D. Lea,et al.  Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion , 2004, Science.

[23]  A. Caruso,et al.  CALCAREOUS PLANKTON HIGH RESOLUTION BIOSTRATIGRAPHY (FORAMINIFERA AND NANNOFOSSILS) OF THE UPPERMOST LANGHIAN – LOWER SERRAVALLIANRAS IL-PELLEGRIN SECTION (MALTA) , 2002 .

[24]  I. Raffi,et al.  4. CALIBRATION OF MIOCENE NANNOFOSSIL EVENTS TO ORBITALLY TUNED CYCLOSTRATIGRAPHIES FROM CEARA RISE 1 , 1997 .

[25]  N. Shackleton,et al.  Punctuated evolution of global climate cooling during the Late Middle to Early Late Miocene: High‐resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean , 2001 .

[26]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[27]  H. Brumsack,et al.  Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years , 2001, Nature.

[28]  B. Flower,et al.  The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling , 1994 .

[29]  J. Visser Clay mineral stratigraphy of Miocene to recent marine sediments in the central Mediterranean , 1992 .

[30]  K. Miller,et al.  MIOCENE STABLE ISOTOPE STRATIGRAPHY , SITE 747 , KERGUELEN PLATEAU , 2006 .

[31]  K. Miller,et al.  Drilling and Dating New Jersey Oligocene-Miocene Sequences: Ice Volume, Global Sea Level, and Exxon Records , 1996, Science.

[32]  Heiko Pälike,et al.  Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale , 2004 .

[33]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[34]  G. Bonaduce,et al.  THE OSTRACODS IN THE PALAEOENVIRONMENTAL INTERPRETATION OF THE LATE LANGHIAN - EARLY SERRAVALLIAN SECTION OF RAS IL-PELLEGRIN (MALTA) , 2002 .

[35]  A. Shevenell,et al.  Paleoceanographic Change During the Middle Miocene Climate Revolution: An Antarctic Stable Isotope Perspective , 2004 .

[36]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[37]  U. Röhl,et al.  Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations , 2005 .