IMP 2.0: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks

IMP (Integrative Multi-species Prediction), originally released in 2012, is an interactive web server that enables molecular biologists to interpret experimental results and to generate hypotheses in the context of a large cross-organism compendium of functional predictions and networks. The system provides biologists with a framework to analyze their candidate gene sets in the context of functional networks, expanding or refining their sets using functional relationships predicted from integrated high-throughput data. IMP 2.0 integrates updated prior knowledge and data collections from the last three years in the seven supported organisms (Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Danio rerio, Caenorhabditis elegans, and Saccharomyces cerevisiae) and extends function prediction coverage to include human disease. IMP identifies homologs with conserved functional roles for disease knowledge transfer, allowing biologists to analyze disease contexts and predictions across all organisms. Additionally, IMP 2.0 implements a new flexible platform for experts to generate custom hypotheses about biological processes or diseases, making sophisticated data-driven methods easily accessible to researchers. IMP does not require any registration or installation and is freely available for use at http://imp.princeton.edu.

[1]  Raffaella Lombardi,et al.  Human Molecular Genetic and Functional Studies Identify TRIM63, Encoding Muscle RING Finger Protein 1, as a Novel Gene for Human Hypertrophic Cardiomyopathy , 2012, Circulation research.

[2]  Yuanfang Guan,et al.  A Genomewide Functional Network for the Laboratory Mouse , 2008, PLoS Comput. Biol..

[3]  Casey S. Greene,et al.  Functional Knowledge Transfer for High-accuracy Prediction of Under-studied Biological Processes , 2013, PLoS Comput. Biol..

[4]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[5]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[6]  Matthew A. Hibbs,et al.  Discovery of biological networks from diverse functional genomic data , 2005, Genome Biology.

[7]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[8]  K. Khanna,et al.  DNA double-strand breaks: signaling, repair and the cancer connection , 2001, Nature Genetics.

[9]  Cam Patterson,et al.  Muscle ring finger 1 mediates cardiac atrophy in vivo. , 2009, American journal of physiology. Heart and circulatory physiology.

[10]  Lincoln Stein,et al.  Reactome knowledgebase of human biological pathways and processes , 2008, Nucleic Acids Res..

[11]  M. Kimmel,et al.  Conflict of interest statement. None declared. , 2010 .

[12]  Casey S. Greene,et al.  IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks , 2012, Nucleic Acids Res..

[13]  J A Eisen,et al.  Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. , 1995, Nucleic acids research.

[14]  Yuanfang Guan,et al.  Functional Genomics Complements Quantitative Genetics in Identifying Disease-Gene Associations , 2010, PLoS Comput. Biol..

[15]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[16]  Andrey Alexeyenko,et al.  Comparative interactomics with Funcoup 2.0 , 2011, Nucleic Acids Res..

[17]  Gang Fu,et al.  Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data , 2014, Nucleic Acids Res..

[18]  J. Ahringer,et al.  Posterior patterning by the Caenorhabditis elegans even-skipped homolog vab-7. , 1996, Genes & development.

[19]  Olga G. Troyanskaya,et al.  Accurate Quantification of Functional Analogy among Close Homologs , 2011, PLoS Comput. Biol..

[20]  Shingo Maegawa,et al.  Induction and patterning of trunk and tail neural ectoderm by the homeobox gene eve1 in zebrafish embryos , 2010, Proceedings of the National Academy of Sciences.

[21]  Jeffrey Robbins,et al.  With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure. , 2009, Journal of molecular and cellular cardiology.

[22]  Matthew A. Hibbs,et al.  Exploring the human genome with functional maps. , 2009, Genome research.

[23]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[24]  Gary D. Bader,et al.  GeneMANIA Prediction Server 2013 Update , 2013, Nucleic Acids Res..

[25]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[26]  Timothy E. Hewett,et al.  Pharmacological- and Gene Therapy–Based Inhibition of Protein Kinase Cα/β Enhances Cardiac Contractility and Attenuates Heart Failure , 2006 .

[27]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[28]  Kara Dolinski,et al.  The BioGRID interaction database: 2015 update , 2014, Nucleic Acids Res..

[29]  Christian von Mering,et al.  STRING: a database of predicted functional associations between proteins , 2003, Nucleic Acids Res..

[30]  Minoru Hongo,et al.  MLP-Deficient Mice Exhibit a Disruption of Cardiac Cytoarchitectural Organization, Dilated Cardiomyopathy, and Heart Failure , 1997, Cell.

[31]  Erik L. L. Sonnhammer,et al.  FunCoup 3.0: database of genome-wide functional coupling networks , 2013, Nucleic Acids Res..

[32]  Hedi Peterson,et al.  g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments , 2007, Nucleic Acids Res..

[33]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[34]  Yuanfang Guan,et al.  Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes , 2012, PLoS Comput. Biol..

[35]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[36]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[37]  M. Kanehisa,et al.  The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. , 2012, Methods in molecular biology.

[38]  M. Ruggero,et al.  Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods , 2007, Journal for the Association for Research in Otolaryngology.

[39]  Cam Patterson,et al.  Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Huey-Ling Kao,et al.  Browsing Multidimensional Molecular Networks with the Generic Network Browser (N‐Browse) , 2008, Current protocols in bioinformatics.

[41]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[42]  Michael I. Jordan,et al.  A critical assessment of Mus musculus gene function prediction using integrated genomic evidence , 2008, Genome Biology.

[43]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..