A deterministic thermostat for controlling temperature using all degrees of freedom.

We propose a new thermostat that uses all the phase space variables for controlling temperature and thus differs from the existing thermostats that control either the kinetic (e.g., Nose Hoover) or the configurational (e.g., Braga Travis) degrees of freedom. Our thermostat is a special case of the set of equations proposed by Kusnezov et al. [Ann. Phys. 204, 155 (1990)] and is derived using the extended system method. We show that it generates a canonical phase-space distribution. The performance of the thermostat is compared with those of Nose-Hoover kinetic thermostat and Braga-Travis configurational thermostat for a system (i) in thermal equilibrium, (ii) subjected to sudden temperature changes, and (iii) in steady state non-equilibrium under thermal conduction. We observe that all three thermostats perform similarly for systems in equilibrium. However, our thermostat performs the best in the thermal conduction problem by generating a consistent temperature profile across the conduction length. We expect this thermostat to be useful in other non-equilibrium scenarios as well.

[1]  A. Dhar Heat transport in low-dimensional systems , 2008, 0808.3256.

[2]  O. Narayan,et al.  Equilibration and universal heat conduction in fermi-pasta-ulam chains. , 2007, Physical review letters.

[3]  C. G. Hoover,et al.  Hamiltonian thermostats fail to promote heat flow , 2013, Commun. Nonlinear Sci. Numer. Simul..

[4]  P. Daivis,et al.  Effect of kinetic and configurational thermostats on calculations of the first normal stress coefficient in nonequilibrium molecular dynamics simulations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Hamilton Ip Modified Nosé-Hoover equation for a one-dimensional oscillator: Enforcement of the virial theorem. , 1990 .

[6]  William G. Hoover,et al.  Kinetic moments method for the canonical ensemble distribution , 1996 .

[7]  M. Shirts,et al.  Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations. , 2013, Journal of chemical theory and computation.

[8]  Generalization of the Nosé-Hoover approach , 2003 .

[9]  Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. , 2001, Physical review letters.

[10]  Denis J. Evans,et al.  Configurational temperature: Verification of Monte Carlo simulations , 1998 .

[11]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[12]  Stephen R. Williams,et al.  On the probability of violations of Fourier's law for heat flow in small systems observed for short times. , 2010, The Journal of chemical physics.

[13]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[14]  W. G. Hoover Computational Statistical Mechanics , 1991 .

[15]  Winkler Extended-phase-space isothermal molecular dynamics: Canonical harmonic oscillator. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[16]  J. Erpenbeck,et al.  Shear viscosity of the hard-sphere fluid via nonequilibrium molecular dynamics , 1984 .

[17]  M. Chaplain,et al.  Thermostats for “Slow” Configurational Modes , 2004, physics/0412163.

[18]  K. Travis,et al.  Configurational temperature control for atomic and molecular systems. , 2008, The Journal of chemical physics.

[19]  Stephen D. Bond,et al.  The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .

[20]  C. G. Hoover,et al.  Hamiltonian dynamics of thermostated systems: two-temperature heat-conducting phi4 chains. , 2007, The Journal of chemical physics.

[21]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[22]  K. Travis,et al.  Configurational temperature and pressure molecular dynamics: review of current methodology and applications to the shear flow of a simple fluid , 2006 .

[23]  K. Travis,et al.  A configurational temperature Nosé-Hoover thermostat. , 2005, The Journal of chemical physics.

[24]  P. Hünenberger Thermostat Algorithms for Molecular Dynamics Simulations , 2005 .

[25]  Jerome Delhommelle,et al.  Configurational temperature thermostat for fluids undergoing shear flow: application to liquid chlorine , 2001 .

[26]  B. D. Todd,et al.  A comparison of model linear chain molecules with constrained and flexible bond lengths under planar Couette and extensional flows , 2009 .

[27]  S. K. Ratkje,et al.  Criteria for local equilibrium in a system with transport of heat and mass , 1995 .

[28]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[29]  William G. Hoover,et al.  High-strain-rate plastic flow studied via nonequilibrium molecular dynamics , 1982 .

[30]  Evans,et al.  Shear thickening and turbulence in simple fluids. , 1986, Physical review letters.

[31]  D. Bedeaux,et al.  Molecular dynamics simulations of a chemical reaction; conditions for local equilibrium in a temperature gradient. , 2006, Physical chemistry chemical physics : PCCP.

[32]  Glenn J. Martyna,et al.  Molecular dynamics simulations of a protein in the canonical ensemble , 1993 .

[33]  J. G. Powles,et al.  Temperatures: old, new and middle aged , 2005 .

[34]  Molecular simulation of transport in nanopores: application of the transient-time correlation function formalism. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[36]  Wolfgang Bauer,et al.  Canonical ensembles from chaos , 1990 .

[37]  D. Searles,et al.  Fluctuation Theorem for Heat Flow , 2001 .

[38]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[39]  Cho,et al.  Ergodicity and dynamical properties of constant-temperature molecular dynamics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[41]  David Jou,et al.  Understanding Non-equilibrium Thermodynamics , 2008 .

[42]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[43]  Jian-Sheng Wang,et al.  Intriguing heat conduction of a chain with transverse motions. , 2004, Physical review letters.

[44]  Tensor temperature and shock-wave stability in a strong two-dimensional shock wave. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[46]  William G. Hoover,et al.  Nonequilibrium molecular dynamics via Gauss's principle of least constraint , 1983 .

[47]  Denis J. Evans,et al.  Computer ‘‘experiment’’ for nonlinear thermodynamics of Couette flow , 1983 .

[48]  Stephen R. Williams,et al.  Dissipation and the relaxation to equilibrium , 2008, 0811.2248.

[49]  D. Jou,et al.  Temperature in non-equilibrium states: a review of open problems and current proposals , 2003 .

[50]  H. H. Rugh,et al.  Dynamical Approach to Temperature , 1997, chao-dyn/9701026.

[51]  S. Olla,et al.  Fourier’s Law for a Microscopic Model of Heat Conduction , 2005 .

[52]  Microscopic expressions for the thermodynamic temperature , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  M. Chaplain,et al.  Notes on configurational thermostat schemes. , 2010, The Journal of chemical physics.

[54]  C. G. Hoover,et al.  Nonequilibrium temperature and thermometry in heat-conducting phi4 models. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Lucy T. Zhang,et al.  Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. , 2013, The Journal of chemical physics.

[56]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[57]  Lamberto Rondoni,et al.  Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition , 2010 .