Statistical Performance of Convex Tensor Decomposition
暂无分享,去创建一个
Hisashi Kashima | Taiji Suzuki | Ryota Tomioka | Kohei Hayashi | Ryota Tomioka | Taiji Suzuki | H. Kashima | K. Hayashi
[1] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[2] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[3] C. Fombrun,et al. Matrix , 1979, Encyclopedic Dictionary of Archaeology.
[4] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[5] R. Bro. PARAFAC. Tutorial and applications , 1997 .
[6] K. Fukumizu. Generalization Error of Linear Neural Networks in Unidentiable Cases , 1999 .
[7] Nikos D. Sidiropoulos,et al. Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..
[8] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[9] Pierre Comon,et al. Tensor Decompositions, State of the Art and Applications , 2002 .
[10] Narendra Ahuja,et al. Facial expression decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[11] Tommi S. Jaakkola,et al. Maximum-Margin Matrix Factorization , 2004, NIPS.
[12] L. Lathauwer,et al. Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .
[13] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[14] Francis R. Bach,et al. Consistency of trace norm minimization , 2007, J. Mach. Learn. Res..
[15] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[16] Bülent Yener,et al. Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.
[17] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[18] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[19] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[20] Ryota Tomioka,et al. Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.
[21] A. Tsybakov,et al. Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.
[22] Martin J. Wainwright,et al. Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.
[23] Morten Mørup,et al. Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..
[24] J. Suykens,et al. Nuclear Norms for Tensors and Their Use for Convex Multilinear Estimation , 2011 .
[25] B. Recht,et al. Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .
[26] Martin J. Wainwright,et al. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..
[27] Jieping Ye,et al. Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..