Statistical Performance of Convex Tensor Decomposition

We analyze the statistical performance of a recently proposed convex tensor decomposition algorithm. Conventionally tensor decomposition has been formulated as non-convex optimization problems, which hindered the analysis of their performance. We show under some conditions that the mean squared error of the convex method scales linearly with the quantity we call the normalized rank of the true tensor. The current analysis naturally extends the analysis of convex low-rank matrix estimation to tensors. Furthermore, we show through numerical experiments that our theory can precisely predict the scaling behaviour in practice.

[1]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[2]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[3]  C. Fombrun,et al.  Matrix , 1979, Encyclopedic Dictionary of Archaeology.

[4]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[5]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[6]  K. Fukumizu Generalization Error of Linear Neural Networks in Unidentiable Cases , 1999 .

[7]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[8]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[9]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[10]  Narendra Ahuja,et al.  Facial expression decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[11]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[12]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Francis R. Bach,et al.  Consistency of trace norm minimization , 2007, J. Mach. Learn. Res..

[15]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[16]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[17]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[18]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[19]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[20]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[21]  A. Tsybakov,et al.  Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.

[22]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[23]  Morten Mørup,et al.  Applications of tensor (multiway array) factorizations and decompositions in data mining , 2011, WIREs Data Mining Knowl. Discov..

[24]  J. Suykens,et al.  Nuclear Norms for Tensors and Their Use for Convex Multilinear Estimation , 2011 .

[25]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[26]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[27]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..