Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications

In recent times, several synthetic pathways have been developed to create multilayered materials of diverse composition that combine accessible porosity and optical properties of structural origin, i.e., not related to absorption. These materials possess a refractive index that varies periodically along one direction, which gives rise to optical diffraction effects characteristic of Bragg stacks or one-dimensional photonic crystals (1DPCs). The technological potential of such porous optical materials has been demonstrated in various fields related to energy and environmental sciences, such as detection and recognition of targeted biological or chemical species, photovoltaics, or radiation shielding. In all cases, improved performance is achieved as a result of the added functionality porosity brings. In this review, a unified picture of this emerging field is provided.

[1]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[2]  Philippe M. Fauchet,et al.  Reflectance analysis of a multilayer one-dimensional porous silicon structure: Theory and experiment , 2008 .

[3]  Hironori Arakawa,et al.  Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2002 .

[4]  Younan Xia,et al.  Strain-controlled release of molecules from arrayed microcapsules supported on an elastomer substrate. , 2011, Angewandte Chemie.

[5]  Silvia Colodrero,et al.  Sorption Properties of Mesoporous Multilayer Thin Films , 2008 .

[6]  M. Scalora,et al.  Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[7]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[8]  J. S. Sharp,et al.  Infrared Dielectric Mirrors Based on Thin Film Multilayers of Polystyrene and Polyvinylpyrrolidone , 2011 .

[9]  W. Freeman,et al.  Porous silicon in drug delivery devices and materials. , 2008, Advanced drug delivery reviews.

[10]  Francesco Scotognella,et al.  Nanoparticle one-dimensional photonic-crystal dye laser. , 2009, Small.

[11]  Yanhu Li,et al.  Coloring of aluminum using photonic crystals of porous alumina with electrodeposited Ag , 2009 .

[12]  J. Anta,et al.  Photoconducting Bragg Mirrors based on TiO2 Nanoparticle Multilayers , 2008 .

[13]  M. Rubner,et al.  Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands , 2009 .

[14]  Simon Breslav,et al.  Towards the Photonic Nose: A Novel Platform for Molecule and Bacteria Identification , 2010, Advanced materials.

[15]  I. Thomas,et al.  Single-layer TiO(2) and multilayer TiO(2)-SiO(2) optical coatings prepared from colloidal suspensions. , 1987, Applied optics.

[16]  A. J. Frank,et al.  Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. , 2003, Journal of the American Chemical Society.

[17]  Augustine Urbas,et al.  Tunable Block Copolymer/Homopolymer Photonic Crystals , 2000 .

[18]  Geoffrey A. Ozin,et al.  Clay Bragg Stack Optical Sensors , 2008 .

[19]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[20]  Hernán Míguez,et al.  Versatility and multifunctionality of highly reflecting Bragg mirrors based on nanoparticle multilayers , 2010 .

[21]  Hao Zhang,et al.  Bioinspired Water‐Vapor‐Responsive Organic/Inorganic Hybrid One‐Dimensional Photonic Crystals with Tunable Full‐Color Stop Band , 2010 .

[22]  Silvia Colodrero,et al.  Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells , 2010 .

[23]  F. J. López-Alcaraz,et al.  Nanoparticle-based One-dimensional Photonic Crystals , 2022 .

[24]  Georg von Freymann,et al.  Mesoporous bragg stack color tunable sensors. , 2006, Nano letters.

[25]  M. Calvo,et al.  Flexible, Adhesive, and Biocompatible Bragg Mirrors Based on Polydimethylsiloxane Infiltrated Nanoparticle Multilayers , 2010 .

[26]  Galo J. A. A. Soler-Illia,et al.  Porous Supramolecularly Templated Optical Resonators Built in 1D Photonic Crystals , 2011 .

[27]  U. Wiesner,et al.  Tunable Mesoporous Bragg Reflectors Based on Block‐Copolymer Self‐Assembly , 2011, Advanced materials.

[28]  Luis M. Liz-Marzán,et al.  Environmental applications of plasmon assisted Raman scattering , 2010 .

[29]  Omar M. Buazza,et al.  Elastic behaviour of a nanocomposite thin film undergoing significant strains , 2010, Nanotechnology.

[30]  Zhizhong Wu,et al.  Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks. , 2007, Small.

[31]  L. Liz‐Marzán,et al.  Interplay of Resonant Cavity Modes with Localized Surface Plasmons: Optical Absorption Properties of Bragg Stacks Integrating Gold Nanoparticles , 2011, Advanced materials.

[32]  K. Thomas,et al.  Gallium arsenide infiltration of nanoporous multilayers: a route to high-dielectric-contrast one-dimensional photonic crystals. , 2010, Small.

[33]  Hao Zhang,et al.  Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals , 2011 .

[34]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[35]  Hernán Míguez,et al.  Mesostructured thin films as responsive optical coatings of photonic crystals. , 2009, Small.

[36]  Lide Zhang,et al.  Distributed Bragg reflector made of anodic alumina membrane , 2009 .

[37]  Stephan Frohnhoff,et al.  Porous silicon superlattices , 1994 .

[38]  A. Mihi,et al.  Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[39]  Hernán Míguez,et al.  Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible and transferable Bragg mirrors of high dielectric contrast , 2009 .

[40]  Kristopher A Kilian,et al.  The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. , 2009, Chemical communications.

[41]  M. Calvo,et al.  Control over the structural and optical features of nanoparticle-based one-dimensional photonic crystals. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  B. Martincigh,et al.  The potential carcinogenic effect of Uvinul DS49 — a common UV absorber used in cosmetics , 1992 .

[43]  A. Uhlir Electrolytic shaping of germanium and silicon , 1956 .

[44]  S. Furukawa,et al.  Synthesis of reflective TiO2/SiO2 multilayer flakes for solar cell application , 2010 .

[45]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[46]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[47]  X. Sheng,et al.  Integration of Self-Assembled Porous Alumina and Distributed Bragg Reflector for Light Trapping in Si Photovoltaic Devices , 2010, IEEE Photonics Technology Letters.

[48]  M. Rubner,et al.  Targeted functionalization of nanoparticle thin films via capillary condensation. , 2009, Nano letters.

[49]  Silvia Colodrero,et al.  Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in Photonic-Crystal-Based Dye-Sensitized Solar Cells , 2009 .

[50]  Grégory Vincent,et al.  Optical properties of porous silicon superlattices , 1994 .

[51]  A. Gonzalez-Elipe,et al.  TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition , 2010 .

[52]  Kristopher A Kilian,et al.  Peptide-modified optical filters for detecting protease activity. , 2007, ACS nano.

[53]  A.M.A. van Dongen,et al.  Europium (III) in oxide glasses: Dependence of the emission spectrum upon glass composition , 1989 .

[54]  D. R. Turner Electropolishing Silicon in Hydrofluoric Acid Solutions , 1958 .

[55]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[56]  G. Beaucarne,et al.  Chirped porous silicon reflectors for thin-film epitaxial silicon solar cells , 2008 .

[57]  M. Brett,et al.  New Materials at a Glance , 2008, Science.

[58]  H. Míguez,et al.  Response of nanoparticle-based one-dimensional photonic crystals to ambient vapor pressure. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[59]  Feng-hua Wang,et al.  Porous Anodic Aluminum Oxide Bragg Stacks as Chemical Sensors , 2008 .

[60]  E. Fred Schubert,et al.  Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material , 2007 .

[61]  Francesco Scotognella,et al.  Stacking the Nanochemistry Deck: Structural and Compositional Diversity in One‐Dimensional Photonic Crystals , 2009 .

[62]  Jun-Ho Yum,et al.  Panchromatic engineering for dye-sensitized solar cells , 2011 .

[63]  Jeremy C. Sit,et al.  Nanostructured gradient index optical filter for high-speed humidity sensing , 2006 .

[64]  K. Barla,et al.  Porosity and Pore Size Distributions of Porous Silicon Layers , 1987 .

[65]  M. Calvo,et al.  Environmentally responsive nanoparticle-based luminescent optical resonators. , 2010, Nanoscale.

[66]  Geoffrey A Ozin,et al.  Photonic clays: a new family of functional 1D photonic crystals. , 2008, ACS nano.

[67]  E. Grulke,et al.  Polymer nanocomposite thin film mirror for the infrared region. , 2007, Small.

[68]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[69]  J. Anta,et al.  Spectral Response of Opal-Based Dye-Sensitized Solar Cells , 2008 .

[70]  G. Piccialli,et al.  Direct Synthesis of Oligonucleotides on Nanostructured Silica Multilayers , 2010 .

[71]  Ashraful Islam,et al.  Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1% , 2006 .

[72]  D. Koziej,et al.  Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films. , 2009, ACS applied materials & interfaces.

[73]  Michael J. Sailor,et al.  Color me sensitive: amplification and discrimination in photonic silicon nanostructures. , 2007, ACS nano.

[74]  R. Mertens,et al.  Efficiency (>15%) for thin‐film epitaxial silicon solar cells on 70 cm2 area offspec silicon substrate using porous silicon segmented mirrors , 2010 .

[75]  B. Armstrong,et al.  The epidemiology of UV induced skin cancer. , 2001, Journal of photochemistry and photobiology. B, Biology.

[76]  Dusan Losic,et al.  Controlled drug release from porous materials by plasma polymer deposition. , 2010, Chemical communications.

[77]  G. Boschloo,et al.  Porous One‐Dimensional Photonic Crystals Improve the Power‐Conversion Efficiency of Dye‐Sensitized Solar Cells , 2009 .

[78]  F. J. López-Alcaraz,et al.  Photonic Crystals from Ordered Mesoporous Thin‐Film Functional Building Blocks , 2007 .

[79]  Ian M. Thomas,et al.  Optical coatings prepared from colloidal media , 1989 .

[80]  S. Holbrook,et al.  Molecular models for DNA damaged by photoreaction. , 1985, Science.

[81]  H. Goesmann,et al.  Nanoparticulate functional materials. , 2010, Angewandte Chemie.