A New Observer for Perspective Vision Systems Under Noisy Measurements

A simple design of observers for the range identification problem in perspective vision systems is given based on nonlinear contraction theory and synchronization. Exponential convergence to the object coordinates is achieved. In the presence of significant measurement noise, the performance is improved by synchronization among a group of observers.

[1]  D. Dawson,et al.  Range identification for perspective vision systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[2]  Anders Heyden,et al.  Observer forms for perspective systems , 2010, Autom..

[3]  Warren E. Dixon,et al.  Globally exponentially stable observer for vision-based range estimation , 2012 .

[4]  Nicolas Tabareau,et al.  A Contraction Theory Approach to Stochastic Incremental Stability , 2007, IEEE Transactions on Automatic Control.

[5]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[6]  Nicolas Tabareau,et al.  How Synchronization Protects from Noise , 2007, 0801.0011.

[7]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[8]  J. Slotine,et al.  On metric observers for nonlinear systems , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[9]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[10]  Warren E. Dixon,et al.  Identification of a moving object's velocity with a fixed camera , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[11]  Alessandro Astolfi,et al.  Invariant Manifold Based Reduced-Order Observer Design for Nonlinear Systems , 2008, IEEE Transactions on Automatic Control.

[12]  Xinkai Chen,et al.  State observer for a class of nonlinear systems and its application to machine vision , 2004, IEEE Transactions on Automatic Control.

[13]  Xinkai Chen,et al.  A new state observer for perspective systems , 2002, IEEE Trans. Autom. Control..

[14]  B. Ghosh,et al.  Visually guided ranging from observations of points, lines and curves via an identifier based nonlinear observer , 1995 .

[15]  Alessandro Astolfi,et al.  A new solution to the problem of range identification in perspective vision systems , 2005, IEEE Transactions on Automatic Control.

[16]  Giuseppe Oriolo,et al.  Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments , 2008, Int. J. Robotics Res..

[17]  Warren E. Dixon,et al.  Single Camera Structure and Motion , 2012, IEEE Transactions on Automatic Control.

[18]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .