Macro-superlubricity in sputtered MoS_2-based films by decreasing edge pinning effect

[1]  J. He,et al.  Synthesis of N-doped carbon quantum dots as lubricant additive to enhance the tribological behavior of MoS_2 nanofluid , 2022, Friction.

[2]  Xianguo Hu,et al.  Dispersion and tribological properties of nano-MoS2/sericite particles in di-n-butyl adipate synthesized by their own catalysis , 2022, Tribology International.

[3]  Haojie Song,et al.  Ionic Liquid Crystals Confining Ultrathin MoS2 Nanosheets: A High-Concentration and Stable Aqueous Dispersion , 2022, ACS Sustainable Chemistry & Engineering.

[4]  C. Dong,et al.  Superhydrophobic MoS2 Nanosheet–Cu2O Nanoparticle Antiwear Coatings , 2021 .

[5]  Lei Chen,et al.  Shear‐Induced Interfacial Structural Conversion of Graphene Oxide to Graphene at Macroscale , 2020, Advanced Functional Materials.

[6]  C. Dong,et al.  Tribological property of MoS2-Cr3O4 nanocomposite films prepared by PVD and liquid phase synthesis , 2020 .

[7]  Lei Chen,et al.  Toward Robust Macroscale Superlubricity on Engineering Steel Substrate , 2020, Advanced materials.

[8]  Hua Yu,et al.  Precise control of the interlayer twist angle in large scale MoS2 homostructures , 2020, Nature Communications.

[9]  Xuan Li,et al.  Mo-vacancy induced high performance for photocatalytic hydrogen production over MoS2 nanosheets cocatalyst , 2020 .

[10]  Wei-min Liu,et al.  MoS2-Au/Au multilayer lubrication film with better resistance to space environment , 2020 .

[11]  E. Meyer,et al.  Structural superlubricity and ultralow friction across the length scales , 2018, Nature.

[12]  Quanshui Zheng,et al.  Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions , 2018, Nature Materials.

[13]  Peter V Coveney,et al.  Graphene–Graphene Interactions: Friction, Superlubricity, and Exfoliation , 2018, Advanced materials.

[14]  M. Hu,et al.  Tribological properties of WS2/MoS2-Ag composite films lubricated with ionic liquids under vacuum conditions , 2017 .

[15]  Xianlong Wei,et al.  Superlubricity between MoS2 Monolayers , 2017, Advanced materials.

[16]  Jianbin Luo,et al.  Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere , 2017, Nature Communications.

[17]  Sanket A. Deshmukh,et al.  Macroscale superlubricity enabled by graphene nanoscroll formation , 2015, Science.

[18]  Wei-min Liu,et al.  Comparative study of moisture corrosion to WS2 and WS2/Cu multilayer films , 2014 .

[19]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[20]  M. Shaijumon,et al.  MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. , 2014, ACS nano.

[21]  Wei-min Liu,et al.  Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties , 2014 .

[22]  Qing Chen,et al.  Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. , 2013, Nature nanotechnology.

[23]  C. Gervasi,et al.  Evidences of the formation of a tin(IV) complex in citric–citrate buffer solution: A study based on voltammetric, FTIR and ab initio calculations , 2012 .

[24]  Thomas W. Scharf,et al.  Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings , 2010 .

[25]  Yuhua Shen,et al.  A Simple Method To Construct Bifunctional Fe3O4/Au Hybrid Nanostructures and Tune Their Optical Properties in the Near-Infrared Region , 2010 .

[26]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[27]  S. Tehrani,et al.  Edge pinning effect in single- and three-layer patterns , 2000 .

[28]  J. Zabinski,et al.  Disorder-Induced Low-Frequency Raman Band Observed in Deposited MoS2 Films , 1994 .

[29]  Linus Pauling,et al.  The Crystal Structure of Molybdenite , 1923 .

[30]  Wei-min Liu,et al.  Nanostructured WS2–Ni composite films for improved oxidation, resistance and tribological performance , 2014 .

[31]  H. Wan,et al.  Molybdenum(VI) complex with citric acid: synthesis and structural characterization of 1:1 ratio citrato molybdate K2Na4[(MoO2)2(cit)2]·5H2O , 1997 .