A nonparametric probabilistic approach for quantifying uncertainties in low‐dimensional and high‐dimensional nonlinear models

Summary A nonparametric probabilistic approach for modeling uncertainties in projection-based, nonlinear, reduced-order models is presented. When experimental data are available, this approach can also quantify uncertainties in the associated high-dimensional models. The main underlying idea is twofold. First, to substitute the deterministic reduced-order basis (ROB) with a stochastic counterpart. Second, to construct the probability measure of the stochastic reduced-order basis (SROB) on a subset of a compact Stiefel manifold in order to preserve some important properties of a ROB. The stochastic modeling is performed so that the probability distribution of the constructed SROB depends on a small number of hyperparameters. These are determined by solving a reduced-order statistical inverse problem. The mathematical properties of this novel approach for quantifying model uncertainties are analyzed through theoretical developments and numerical simulations. Its potential is demonstrated through several example problems from computational structural dynamics. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  M. Shinozuka,et al.  Monte Carlo Solution of Nonlinear Vibrations , 1971 .

[2]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[3]  Christian Soize,et al.  Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields , 1995 .

[4]  C. Farhat,et al.  Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency , 2014 .

[5]  David Amsallem,et al.  An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .

[6]  J. Peraire,et al.  An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations , 2008 .

[7]  Christian Soize,et al.  Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies , 2008 .

[8]  Christian Soize Stochastic modeling of uncertainties in computational structural dynamics—Recent theoretical advances , 2013 .

[9]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[10]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .

[11]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[12]  Christian Soize,et al.  Non‐parametric–parametric model for random uncertainties in non‐linear structural dynamics: application to earthquake engineering , 2004 .

[13]  Christian Soize,et al.  Probabilistic impedance of foundation: Impact of the seismic design on uncertain soils , 2008 .

[14]  C. Farhat,et al.  Structure‐preserving, stability, and accuracy properties of the energy‐conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models , 2015 .

[15]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[16]  Christian Soize,et al.  Blade Manufacturing Tolerances Definition for a Mistuned Industrial Bladed Disk , 2004 .

[17]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[18]  J. N. Kapur,et al.  Entropy Optimization Principles and Their Applications , 1992 .

[19]  P. A. Martin Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification , 2015 .

[20]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[21]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[22]  Christian Soize,et al.  Random matrix models and nonparametric method for uncertainty quantification , 2016 .

[23]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[24]  Christian Soize,et al.  Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model , 2003 .

[25]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[26]  Christian Soize,et al.  A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.

[27]  Christian Soize,et al.  Robust Design Optimization in Computational Mechanics , 2008 .

[28]  G. Schuëller,et al.  Uncertain linear systems in dynamics: Retrospective and recent developments by stochastic approaches , 2009 .

[29]  Christian Soize,et al.  Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation , 2012, Comput. Math. Appl..

[30]  Christian Soize,et al.  Construction of a probabilistic model for impedance matrices , 2007 .

[31]  G. I. Schuëller,et al.  Developments in stochastic structural mechanics , 2006 .

[32]  K. Willcox,et al.  Interpolation among reduced‐order matrices to obtain parameterized models for design, optimization and probabilistic analysis , 2009 .

[33]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[34]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[35]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[36]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[37]  Christian Soize,et al.  Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation. , 2008, The Journal of the Acoustical Society of America.

[38]  Karen Willcox,et al.  Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications , 2007 .

[39]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[40]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[41]  Christian Soize,et al.  Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .

[42]  Christian Soize,et al.  Transient dynamics in structures with non-homogeneous uncertainties induced by complex joints , 2006 .

[43]  C. Farhat,et al.  Design optimization using hyper-reduced-order models , 2015 .

[44]  Christian Soize,et al.  Stochastic reduced order models for uncertain nonlinear dynamical systems , 2007 .

[45]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[46]  AmsallemDavid,et al.  Design optimization using hyper-reduced-order models , 2015 .

[47]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[48]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[49]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[50]  Christian Soize Random matrix theory for modeling uncertainties in computational mechanics , 2005 .

[51]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[52]  Christian Soize,et al.  Nonparametric probabilistic approach of uncertainties for elliptic boundary value problem , 2009 .

[53]  Christian Soize,et al.  Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification , 2012 .

[54]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[55]  Christian Soize,et al.  Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels , 2006 .

[56]  Christian Soize,et al.  Nonparametric stochastic modeling of structures with uncertain boundary conditions / coupling between substructures , 2013 .

[57]  Christian Soize,et al.  Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems , 2008, Computer Methods in Applied Mechanics and Engineering.

[58]  Christian Soize,et al.  Design optimization with an uncertain vibroacoustic model , 2008 .

[59]  Christian Soize,et al.  Random field representations for stochastic elliptic boundary value problems and statistical inverse problems , 2013, European Journal of Applied Mathematics.

[60]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[61]  Charbel Farhat,et al.  Progressive construction of a parametric reduced‐order model for PDE‐constrained optimization , 2014, ArXiv.

[62]  Christian Soize,et al.  Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation , 2014 .

[63]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[64]  Christian Soize,et al.  Stochastic Models of Uncertainties in Computational Mechanics , 2012 .

[65]  Christian Soize,et al.  Experimental validation of a nonparametric probabilistic model of nonhomogeneous uncertainties for dynamical systems. , 2004, The Journal of the Acoustical Society of America.

[66]  Christian Soize,et al.  Sound-insulation layer modelling in car computational vibroacoustics in the medium-frequency range , 2010 .