TemplateFlow: FAIR-sharing of multi-scale, multi-species brain models

Reference anatomies of the brain and corresponding atlases play a central role in experimental neuroimaging workflows and are the foundation for reporting standardized results. The choice of such references —i.e., templates— and atlases is one relevant source of methodological variability across studies, which has recently been brought to attention as an important challenge to reproducibility in neuroscience. TemplateFlow is a publicly available framework for human and nonhuman brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to distribute their resources under FAIR —findable, accessible, interoperable, reusable— principles. TemplateFlow supports a multifaceted insight into brains across species, and enables multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species, thereby contributing to increasing the reliability of neuroimaging results.

[1]  Joshua Carp,et al.  The secret lives of experiments: Methods reporting in the fMRI literature , 2012, NeuroImage.

[2]  Richard F. Martin,et al.  Primate brain maps : structure of the macaque brain , 2000 .

[3]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[4]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[5]  Gabriel A. Devenyi,et al.  An MRI-Derived Neuroanatomical Atlas of the Fischer 344 Rat Brain , 2020, Scientific Reports.

[6]  C. Economo,et al.  Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex , 2008 .

[7]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the rat brain hippocampal region: Three-dimensional delineations based on magnetic resonance and diffusion tensor imaging , 2015, NeuroImage.

[8]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[9]  Sebastián M. Real,et al.  E2F1 Regulates Cellular Growth by mTORC1 Signaling , 2011, PloS one.

[10]  J. Townsend,et al.  Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. , 2000, Radiology.

[11]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the Sprague Dawley rat brain , 2014, NeuroImage.

[12]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[13]  Maryann E. Martone,et al.  RRIDs: A Simple Step toward Improving Reproducibility through Rigor and Transparency of Experimental Methods , 2016, Neuron.

[14]  Prabha Siddarth,et al.  Cortical thickness and sulcal depth: insights on development and psychopathology in paediatric epilepsy , 2015, BJPsych Open.

[15]  Bradley C. Love,et al.  Variability in the analysis of a single neuroimaging dataset by many teams , 2020, Nature.

[16]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[17]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[18]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[19]  Joanna M. Wardlaw,et al.  Whole Brain Magnetic Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for Use in Population Imaging , 2017, Front. Neuroinform..

[20]  D. Louis Collins,et al.  ANIMAL+INSECT: Improved Cortical Structure Segmentation , 1999, IPMI.

[21]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[22]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[23]  Mark A. Elliott,et al.  The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth , 2016, NeuroImage.

[24]  D. Louis Collins,et al.  Application of Information Technology: A Four-Dimensional Probabilistic Atlas of the Human Brain , 2001, J. Am. Medical Informatics Assoc..

[25]  Margaret D. King,et al.  The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..

[26]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[27]  Daniel H. Turnbull,et al.  4D MEMRI atlas of neonatal FVB/N mouse brain development , 2015, NeuroImage.

[28]  Saad Jbabdi,et al.  Connectivity Fingerprints: From Areal Descriptions to Abstract Spaces , 2018, Trends in Cognitive Sciences.

[29]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[30]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[31]  G. Allan Johnson,et al.  A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability , 2013, NeuroImage.

[32]  T. Rohlfing,et al.  Incorrect ICBM-DTI-81 atlas orientation and white matter labels , 2013, Front. Neurosci..

[33]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[34]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the rat brain auditory system: Three-dimensional delineations based on structural and diffusion tensor magnetic resonance imaging , 2019, NeuroImage.

[35]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[36]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[37]  Abraham Z. Snyder,et al.  A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume , 2004, NeuroImage.

[38]  David C. Van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[39]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[40]  David C Van Essen,et al.  The impact of traditional neuroimaging methods on the spatial localization of cortical areas , 2018, Proceedings of the National Academy of Sciences.

[41]  P. Mitra,et al.  The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations , 2009, PloS one.

[42]  Phillip A. Cook,et al.  ASLPrep: A Generalizable Platform for Processing of Arterial Spin Labeled MRI and Quantification of Regional Brain Perfusion , 2021, bioRxiv.

[43]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[44]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[45]  Russell A. Poldrack,et al.  PyBIDS: Python tools for BIDS datasets , 2019, J. Open Source Softw..

[46]  Joshua Carp,et al.  On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments , 2012, Front. Neurosci..

[47]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[48]  R. Gur,et al.  Age-related volumetric changes of brain gray and white matter in healthy infants and children. , 2001, Cerebral cortex.

[49]  et al.,et al.  The Effect of Template Choice on Morphometric Analysis of Pediatric Brain Data ☆ , 2022 .

[50]  Thomas E Nichols,et al.  Exploring the impact of analysis software on task fMRI results , 2019, Human brain mapping.

[51]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[52]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[53]  Timothy Edward John Behrens,et al.  Task-free MRI predicts individual differences in brain activity during task performance , 2016, Science.

[54]  Krzysztof J. Gorgolewski,et al.  MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites , 2016, bioRxiv.

[55]  Trygve B. Leergaard,et al.  Addendum to “Waxholm Space atlas of the Sprague Dawley rat brain” [NeuroImage 97 (2014) 374-386] , 2015, NeuroImage.

[56]  Joanna M. Wardlaw,et al.  Use of Brain MRI Atlases to Determine Boundaries of Age-Related Pathology: The Importance of Statistical Method , 2015, PloS one.

[57]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[58]  R. H. Clarke,et al.  The Horsley–Clarke stereotaxic apparatus , 1978, The British journal of surgery.

[59]  Simon B. Eickhoff,et al.  DataLad: distributed system for joint management of code, data, and their relationship , 2021, J. Open Source Softw..

[60]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[61]  Suzanne E. Welcome,et al.  Mapping cortical change across the human life span , 2003, Nature Neuroscience.