Extensions of the well-poised and elliptic well-poised Bailey lemma

It is shown that a dynamical quantum group arising from a vertex-IRF transformation has a second realization with untwisted dynamical multiplication but nontrivial bigrading. Applied to the SL 2; Image ) dynamical quantum group, the second realization is naturally described in terms of Koornwinder's twisted primitive elements. This leads to an intrinsic explanation why harmonic analysis on the “classical” SL(2; Image ) quantum group with respect to twisted primitive elements, as initiated by Koornwinder, is the same as harmonic analysis on the SL(2; C) dynamical quantum group.

[1]  Hjalmar Rosengren Elliptic hypergeometric series on root systems , 2002 .

[2]  George E. Andrews,et al.  MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES , 1984 .

[3]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[4]  Anton Betten,et al.  Algebraic Combinatorics and Applications : Proceedings , 2001 .

[5]  David M. Bressoud,et al.  Some identities for terminating q-series , 1981, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Mourad E. H. Ismail,et al.  Special functions 2000 : current perspective and future directions , 2001 .

[7]  S. Warnaar,et al.  Summation and transformation formulas for elliptic hypergeometric series , 2000, math/0001006.

[8]  J. F. van Diejen,et al.  Elliptic beta integrals and modular hypergeometric sums: An overview , 2002 .

[9]  Vyacheslav P. Spiridonov Elliptic Beta Integrals and Special Functions of Hypergeometric Type , 2001 .

[10]  J. F. van Diejen,et al.  Elliptic Selberg integrals , 2001 .

[11]  G. Andrews Bailey’s Transform, Lemma, Chains and Tree , 2001 .

[12]  V. P. Spiridonov Theta hypergeometric series , 2002 .

[13]  V. P. Spiridonov,et al.  Theta hypergeometric integrals , 2003, math/0303205.

[14]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[15]  On the $q$-analogues of some transformations of nearly-poised hypergeometric series , 1981 .

[16]  Hjalmar Rosengren,et al.  Summations and transformations for multiple basic and elliptic hypergeometric series by determinant evaluations , 2003 .

[17]  J. F. van Diejen,et al.  An Elliptic Macdonald-Morris Conjecture and Multiple Modular Hypergeometric Sums , 2000 .

[18]  Vyacheslav P. Spiridonov,et al.  An elliptic incarnation of the Bailey chain , 2002 .

[19]  G. Andrews,et al.  The WP‐Bailey Tree and its Implications , 2001, math/0109141.

[20]  Vladimir Turaev,et al.  Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions , 1997 .

[21]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[22]  V. P. Spiridonov,et al.  Modular Hypergeometric Residue Sums of Elliptic Selberg Integrals , 2001 .

[23]  Hjalmar Rosengren A proof of a multivariable elliptic summation formula conjectured by Warnaar , 2001 .

[24]  Hjalmar Rosengren,et al.  Elliptic U(2) Quantum Group and Elliptic Hypergeometric Series , 2004 .

[25]  S. Ole Warnaar,et al.  50 Years of Bailey’s Lemma , 2009, 0910.2062.