A tentative model for the explanation of Båth law using the order parameter of seismicity in natural time

Using the order parameter of seismicity defined in natural time, we suggest a simple model for the explanation of Båth law, according to which a mainshock differs in magnitude from its largest aftershock by approximately 1.2 regardless of the mainshock magnitude. In addition, the validity of Båth law is studied in the Global Centroid Moment Tensor catalogue by using two different aftershock definitions. It is found that the mean of this difference, when considering all the pairs mainshock-largest aftershock, does not markedly differ from 1.2 and the corresponding distributions do not depend on the mainshock’s magnitude threshold in a statistically significant manner. Finally, the analysis of the cumulative distribution functions provides evidence in favour of the proposed model.

[1]  N. Sarlis,et al.  Natural time analysis of the Centennial Earthquake Catalog. , 2012, Chaos.

[2]  A. Lombardi,et al.  Probabilistic interpretationof «Bath's Law» , 2009 .

[3]  P. Varotsos,et al.  Point defect parameters in β-PbF2 revisited , 2008 .

[4]  Luciano Telesca,et al.  Analysis of the distribution of the order parameter of synthetic seismicity generated by a simple spring–block system with asperities , 2014 .

[5]  P. Varotsos,et al.  Detrended fluctuation analysis of the magnetic and electric field variations that precede rupture. , 2009, Chaos.

[6]  H. Kantz,et al.  Observing spatio-temporal clustering and separation using interevent distributions of regional earthquakes , 2014 .

[7]  Efthimios S. Skordas,et al.  Order parameter fluctuations of seismicity in natural time before and after mainshocks , 2010 .

[8]  Hiroo Kanamori,et al.  Quantification of Earthquakes , 1978, Nature.

[9]  Panayiotis A. Varotsos,et al.  Natural Time Analysis: The New View of Time : Precursory Seismic Electric Signals, Earthquakes and other Complex Time Series , 2011 .

[10]  P. Varotsos,et al.  A plausible explanation of the b-value in the Gutenberg-Richter law from first Principles , 2004, Proceedings of the Japan Academy. Series B, Physical and Biological Sciences.

[11]  M. S. Lazaridou,et al.  Fluctuations, under time reversal, of the natural time and the entropy distinguish similar looking electric signals of different dynamics , 2007, 0707.3074.

[12]  Masashi Kamogawa,et al.  Minimum of the order parameter fluctuations of seismicity before major earthquakes in Japan , 2013, Proceedings of the National Academy of Sciences.

[13]  P. Varotsos,et al.  Nonextensivity and natural time: The case of seismicity. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  P. Varotsos,et al.  Long-range correlations in the electric signals that precede rupture. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Efthimios S. Skordas,et al.  Seismic Electric Signals: An additional fact showing their physical interconnection with seismicity☆ , 2013 .

[16]  John B. Rundle,et al.  A generalized Omori's law for earthquake aftershock decay , 2004 .

[17]  Nicholas V. Sarlis,et al.  On the Motivation and Foundation of Natural Time Analysis: Useful Remarks , 2015, Acta Geophysica.

[18]  I. Zaliapin,et al.  Earthquake clusters in southern California I: Identification and stability , 2013 .

[19]  Masashi Kamogawa,et al.  Natural time analysis of critical phenomena , 2011, Proceedings of the National Academy of Sciences.

[20]  Ilya Zaliapin,et al.  Clustering analysis of seismicity and aftershock identification. , 2007, Physical review letters.

[21]  Efthimios S. Skordas,et al.  Identifying sudden cardiac death risk and specifying its occurrence time by analyzing electrocardiograms in natural time , 2007 .

[22]  John H. Woodhouse,et al.  Determination of earthquake source parameters from waveform data for studies of global and regional seismicity , 1981 .

[23]  Nicholas V. Sarlis,et al.  Scale-specific order parameter fluctuations of seismicity in natural time before mainshocks , 2011 .

[24]  P. Varotsos,et al.  Similarity of fluctuations in correlated systems: the case of seismicity. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  G. Atkinson,et al.  Aftershock Statistics of Major Subduction Earthquakes , 2013 .

[26]  Panayiotis A. Varotsos,et al.  Physical properties of the variations of the electric field of the earth preceding earthquakes. II. determination of epicenter and magnitude , 1984 .

[27]  Yehuda Ben-Zion,et al.  Earthquake clusters in southern California II: Classification and relation to physical properties of the crust , 2013 .

[28]  M. Baiesi,et al.  Scale-free networks of earthquakes and aftershocks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  I. Zaliapin,et al.  Artefacts of earthquake location errors and short-term incompleteness on seismicity clusters in southern California , 2015 .

[30]  Panayiotis A. Varotsos,et al.  Physical properties of the variations of the electric field of the earth preceding earthquakes, I , 1984 .

[31]  Masashi Kamogawa,et al.  Natural-time analysis of critical phenomena: The case of seismicity , 2010 .

[32]  C. Bach,et al.  Seismic moment ratio of aftershocks with respect to main shocks , 2013 .

[33]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[34]  Markus Båth,et al.  Lateral inhomogeneities of the upper mantle , 1965 .

[35]  M. S. Lazaridou,et al.  Investigation of seismicity after the initiation of a Seismic Electric Signal activity until the main shock , 2008, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[36]  M. S. Lazaridou,et al.  Latest aspects of earthquake prediction in Greece based on seismic electric signals, II☆ , 1993 .