Modeling Perspective Using Adaptor Grammars

Strong indications of perspective can often come from collocations of arbitrary length; for example, someone writing get the government out of my X is typically expressing a conservative rather than progressive viewpoint. However, going beyond unigram or bigram features in perspective classification gives rise to problems of data sparsity. We address this problem using nonparametric Bayesian modeling, specifically adaptor grammars (Johnson et al., 2006). We demonstrate that an adaptive naive Bayes model captures multiword lexical usages associated with perspective, and establishes a new state-of-the-art for perspective classification results using the Bitter Lemons corpus, a collection of essays about mid-east issues from Israeli and Palestinian points of view.

[1]  Pedro M. Domingos,et al.  Naive Bayes models for probability estimation , 2005, ICML.

[2]  M. Laver,et al.  Extracting Policy Positions from Political Texts Using Words as Data , 2003, American Political Science Review.

[3]  Rob Malouf,et al.  A Preliminary Investigation into Sentiment Analysis of Informal Political Discourse , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[4]  Mark Johnson,et al.  Using Adaptor Grammars to Identify Synergies in the Unsupervised Acquisition of Linguistic Structure , 2008, ACL.

[5]  Philip Resnik,et al.  More than Words: Syntactic Packaging and Implicit Sentiment , 2009, NAACL.

[6]  Dan Klein,et al.  The Infinite PCFG Using Hierarchical Dirichlet Processes , 2007, EMNLP.

[7]  Noah A. Smith,et al.  Variational Inference for Adaptor Grammars , 2010, NAACL.

[8]  Thomas L. Griffiths,et al.  Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models , 2006, NIPS.

[9]  Burt L. Monroe,et al.  Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict , 2008, Political Analysis.

[10]  David D. Lewis,et al.  Naive (Bayes) at Forty: The Independence Assumption in Information Retrieval , 1998, ECML.

[11]  Mark Johnson,et al.  Improving nonparameteric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars , 2009, NAACL.

[12]  TanChade-Meng,et al.  The use of bigrams to enhance text categorization , 2002 .

[13]  Stefan Kaufmann,et al.  Classifying Party Affiliation from Political Speech , 2008 .

[14]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[15]  Mark Johnson,et al.  PCFGs, Topic Models, Adaptor Grammars and Learning Topical Collocations and the Structure of Proper Names , 2010, ACL.

[16]  Yuan-Fang Wang,et al.  The use of bigrams to enhance text categorization , 2002, Inf. Process. Manag..

[17]  Philip Resnik,et al.  GIBBS SAMPLING FOR THE UNINITIATED , 2010 .

[18]  Adam Kowalczyk,et al.  Second Order Features for Maximising Text Classification Performance , 2001, ECML.

[19]  Dan Klein,et al.  Unsupervised Coreference Resolution in a Nonparametric Bayesian Model , 2007, ACL.

[20]  Robert M. Entman,et al.  Framing: Toward Clarification of a Fractured Paradigm , 1993 .

[21]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[22]  Wei-Hao Lin,et al.  Which Side are You on? Identifying Perspectives at the Document and Sentence Levels , 2006, CoNLL.

[23]  R. Bekkerman,et al.  Using Bigrams in Text Categorization , 2003 .