Ocean Surface Foam and Microwave Emission: Dependence on Frequency and Incidence Angle

Surface roughness and foam are two main components of ocean surface microwave thermal emission. Surface roughness provides scattering element and modifies local incidence angle. Air in foam alters the dielectric property of the surface layer. Bubbles in foam also alter the curvature of foam-water interface and modify emission and scattering properties of the water surface itself. Whitecap coverage <inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {c}}$ </tex-math></inline-formula> is the most accessible oceanographic information to represent surface foam. For emission analysis, it is necessary to establish a function relating to <inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {c}}$ </tex-math></inline-formula> and the effective air fraction <inline-formula> <tex-math notation="LaTeX">$F_{\mathrm {a}}$ </tex-math></inline-formula> interacting with electromagnetic (EM) waves. An empirical relation is established through analyzing several microwave radiometer data sets in high winds covering a wide range of frequency, incidence angle, and vertical and horizontal polarizations. A physical interpretation of the proposed <inline-formula> <tex-math notation="LaTeX">$F_{\mathrm {a}}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {c}}$ </tex-math></inline-formula>) relationship is discussed. The relationship is used to quantify several important characteristics of surface foam relevant to microwave emission, including effective air fraction and skin depth as functions of wind speed, microwave frequency, and incidence angle.

[1]  Wenqing Tang,et al.  SMAP L-Band Passive Microwave Observations of Ocean Surface Wind During Severe Storms , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Francois Le Chevalier,et al.  Future Ocean Scatterometry: On the Use of Cross-Polar Scattering to Observe Very High Winds , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Stephen J. Katzberg,et al.  The use of reflected GPS signals to retrieve ocean surface wind speeds in tropical cyclones , 2013 .

[4]  C. G. Gardner,et al.  High dielectric constant microwave probes for sensing soil moisture , 1974 .

[5]  Yann Kerr,et al.  SMOS satellite L‐band radiometer: A new capability for ocean surface remote sensing in hurricanes , 2012 .

[6]  Stephen J. Katzberg,et al.  Comparison of reflected GPS wind speed retrievals with dropsondes in tropical cyclones , 2009 .

[7]  Paul A. Hwang,et al.  Low-Frequency Mean Square Slopes and Dominant Wave Spectral Properties: Toward Tropical Cyclone Remote Sensing , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[8]  R. Kwok,et al.  Polarimetric scattering and emission properties of targets with reflection symmetry , 1994 .

[9]  J. Kong,et al.  Effective permittivity of dielectric mixtures , 1988 .

[10]  Mark A. Donelan,et al.  The air-sea interface and surface stress under tropical cyclones , 2014, Scientific Reports.

[11]  G. Frederick Williams,et al.  Microwave Emissivity Measurements of Bubbles and Foam , 1971 .

[12]  Ramon Villarino,et al.  The emissivity of foam-covered water surface at L-band: theoretical modeling and experimental results from the FROG 2003 field experiment , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Frank J. Wentz,et al.  A model function for the ocean‐normalized radar cross section at 14 GHz derived from NSCAT observations , 1999 .

[14]  Peter W. Gaiser,et al.  Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity , 2012, Remote. Sens..

[15]  Thomas Meissner,et al.  Wind-Vector Retrievals Under Rain With Passive Satellite Microwave Radiometers , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Jacqueline Boutin,et al.  Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi-theoretical approach , 2016 .

[17]  Thomas Meissner,et al.  Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms , 2017 .

[18]  En-Bo Wei,et al.  Emissivity measurements and theoretical model of foam-covered sea surface at C-band , 2014 .

[19]  Magdalena D. Anguelova,et al.  Complex dielectric constant of sea foam at microwave frequencies , 2008 .

[20]  Simon Yueh,et al.  Passive and Active L-Band Microwave Observations and Modeling of Ocean Surface Winds , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Paul A. Hwang,et al.  Foam and Roughness Effects on Passive Microwave Remote Sensing of the Ocean , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Thomas Meissner,et al.  The emission and scattering of L‐band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor , 2014 .

[23]  William J. Plant,et al.  Bragg Scattering of Electromagnetic Waves from the Air/Sea Interface , 1990 .

[24]  James P. Hollinger,et al.  Passive Microwave Measurements of Sea Surface Roughness , 1971 .

[25]  A. Stogryn The emissivity of sea foam at microwave frequencies , 1971 .

[26]  Wenqing Tang,et al.  L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[27]  R. Kwok,et al.  Polarimetric passive remote sensing of ocean wind vectors , 1994 .

[28]  En-Bo Wei,et al.  Estimating microwave emissivity of sea foam by Rayleigh method , 2013 .

[29]  G. Farquharson,et al.  Radiometric measurements of the microwave emissivity of foam , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[30]  Paul A. Hwang Surface Foam and L-Band Microwave Radiometer Measurements in High Winds , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Steven C. Reising,et al.  Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Bertrand Chapron,et al.  A revised L-band radio-brightness sensitivity to extreme winds under Tropical Cyclones: the five year SMOS-storm database , 2016 .

[33]  Magdalena D. Anguelova,et al.  Whitecap Fraction From Satellite Measurements: Algorithm Description , 2019, Journal of Geophysical Research: Oceans.

[34]  Bertrand Chapron,et al.  A model of sea-foam thickness distribution for passive microwave remote sensing applications , 2003 .

[35]  Peter W. Gaiser,et al.  Microwave emissivity of sea foam layers with vertically inhomogeneous dielectric properties , 2013 .

[36]  Victor Raizer,et al.  Macroscopic Foam-Spray Models for Ocean Microwave Radiometry , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[37]  Ad Stoffelen,et al.  The CMOD7 Geophysical Model Function for ASCAT and ERS Wind Retrievals , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Min Zhang,et al.  Theoretical study of the small slope approximation for ocean polarimetric thermal emission , 1999, IEEE Trans. Geosci. Remote. Sens..

[39]  Scott Gleason,et al.  Space-Based GNSS Scatterometry: Ocean Wind Sensing Using an Empirically Calibrated Model , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Paul A. Hwang,et al.  High-Wind Drag Coefficient and Whitecap Coverage Derived from Microwave Radiometer Observations in Tropical Cyclones , 2018, Journal of Physical Oceanography.

[41]  R. Kakar,et al.  An empirical microwave emissivity model for a foam-covered sea , 1982, IEEE Journal of Oceanic Engineering.

[42]  A. Sihvola Mixing Rules with Complex Dielectric Coefficients , 2000 .

[43]  Suleiman O. Alsweiss,et al.  Stepped Frequency Microwave Radiometer Wind-Speed Retrieval Improvements , 2019, Remote. Sens..

[44]  Bradley W. Klotz,et al.  Improved Stepped Frequency Microwave Radiometer Tropical Cyclone Surface Winds in Heavy Precipitation , 2014 .