The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role.
暂无分享,去创建一个
[1] R. Foster,et al. Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis , 1993, Journal of Comparative Physiology A.
[2] M. Menaker,et al. Circadian photoreception in the retinally degenerate mouse (rd/rd) , 1991, Journal of Comparative Physiology A.
[3] D. Farner,et al. Electron microscopic and experimental studies of the pineal organ in the white-crowned sparrow, Zonotrichia leucophrys gambelii , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[4] A. Oksche,et al. Elektronenmikroskopische Untersuchungen am Pinealorgan von Passer domesticus , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[5] H. Burda. Adaptive Radiation of Blind Subterranean Mole Rats , 2002, Heredity.
[6] E. Nevo,et al. Biological clock in total darkness: The Clock/MOP3 circadian system of the blind subterranean mole rat , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[7] Á. Szél,et al. Comparative ultrastructure and cytochemistry of the avian pineal organ , 2001, Microscopy research and technique.
[8] E. Nevo,et al. The lens protein alpha-B-crystallin of the blind subterranean mole-rat: high homology with sighted mammals. , 2001, Gene.
[9] E. Nevo,et al. Adaptive radiation of blind subterranean mole rats : naming and revisiting the four sibling species of the Spalax ehrenbergi superspecies in Israel: Spalax galili ( 2n=52), S. golani (2n=54), S. carmeli (2n=58), and S. judaei (2n=60) , 2001 .
[10] Á. Szél,et al. Pineal organ-like organization of the retina in megachiroptean bats. , 2001, Acta biologica Hungarica.
[11] Izzo,et al. SUPPRESSION OF MELATONIN SECRETION IN SOME BLIND PATIENTS BY EXPOSURE TO BRIGHT LIGHT , 2001 .
[12] J. Bowmaker,et al. A Fully Functional Rod Visual Pigment in a Blind Mammal , 2000, The Journal of Biological Chemistry.
[13] H. Wässle,et al. Immunocytochemical analysis of the mouse retina , 2000, The Journal of comparative neurology.
[14] Heinz Wässle,et al. The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.
[15] G. Häcker. The morphology of apoptosis , 2000, Cell and Tissue Research.
[16] E. Nevo,et al. Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi) , 1999, FEBS Letters.
[17] S. Massey,et al. Antibody to calretinin stains AII amacrine cells in the rabbit retina: Double‐label and confocal analyses , 1999, The Journal of comparative neurology.
[18] M. Barinaga,et al. The Clock Plot Thickens , 1999, Science.
[19] R. Foster,et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.
[20] R. Foster,et al. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. , 1999, Science.
[21] E. Nevo. Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence , 1999 .
[22] Á. Szél,et al. The pineal organ as a folded retina: immunocytochemical localization of opsins. , 1998, Biology of the cell.
[23] R. Foster,et al. Light detection in a 'blind' mammal , 1998, Nature Neuroscience.
[24] H. Kolb,et al. Uniqueness of the S‐cone pedicle in the human retina and consequences for color processing , 1997, The Journal of comparative neurology.
[25] L. Vollrath,et al. Plasticity of retinal ribbon synapses , 1996, Microscopy research and technique.
[26] E. Brambilla,et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. , 1996, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.
[27] R. Foster,et al. The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina , 1996, Cell and Tissue Research.
[28] Heinz Wässle,et al. The rod pathway of the macaque monkey retina: Identification of AII‐amacrine cells with antibodies against calretinin , 1995, The Journal of comparative neurology.
[29] M. Herbin,et al. Photic induction of Fos immunoreactivity in the suprachiasmatic nuclei of the blind mole rat (Spalax ehrenbergi) , 1994, Brain Research.
[30] R. Foster,et al. Visual and circadian responses to light in aged retinally degenerate mice , 1994, Vision Research.
[31] H. Kolb,et al. Horizontal cells and cone photoreceptors in primate retina: A Golgi‐light microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.
[32] E. Nevo,et al. Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi , 1993, The Journal of comparative neurology.
[33] Eviatar Nevo,et al. Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal , 1993, Nature.
[34] G. Bronchti,et al. Retinal projections in the blind mole rat: a WGA-HRP tracing study of a natural degeneration. , 1991, Brain research. Developmental brain research.
[35] J. Grim. Whorl-like outer segments in the retina of the mole (Scalopus aquaticus). , 1990, Acta anatomica.
[36] F. Blachier,et al. Calbindin and calretinin localization in retina from different species , 1990, Visual Neuroscience.
[37] E. Nevo,et al. The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? , 1990, Investigative ophthalmology & visual science.
[38] H. Kolb,et al. Identification of pedicles of putative blue‐sensitive cones in the human retina , 1990, The Journal of comparative neurology.
[39] H. Jansen,et al. Development and degeneration of retina in rds mutant mice: ultraimmunohistochemical localization of opsin. , 1987, Experimental eye research.
[40] W. D. de Grip,et al. Enzyme-linked immunosorbent assay for quantitative determination of the visual pigment rhodopsin in total-eye extracts. , 1986, Experimental eye research.
[41] R. Molday,et al. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. , 1986, Experimental eye research.
[42] E. Nevo,et al. Photoperiod perception in the blind mole rat (Spalax ehrenbergi, Nehring): involvement of the Harderian gland, atrophied eyes, and melatonin. , 1984, The Journal of experimental zoology.
[43] L. Vollrath. The Pineal Organ , 1981 .
[44] M. Lavail,et al. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.
[45] Helga Kolb,et al. The connections between horizontal cells and photoreceptors in the retina of the cat: Electron microscopy of Golgi preparations , 1974, The Journal of comparative neurology.
[46] H. Pease,et al. On understanding the organisation of the retinal receptor synapses. , 1971, Brain research.
[47] A. Oksche,et al. [Electron microscopic studies of the pineal organ in Passer domesticus]. , 1969, Zeitschrift fur Zellforschung und mikroskopische Anatomie.