Measurement and modeling of the settling velocity of isometric particles

Abstract The sedimentation of solid particles of simple form and complex form has been studied. The applied data in the case of isometric particles have been compared to those of spherical particles of same volume. This comparison allows highlighting an equivalent sedimentation diameter concept. Dimensionless factor depending on the extended equivalent diameter, the geometric aspect of the particle and the flow have been defined. The use of this factor allows finding an interrelationship with another dimensionless factor which is the Archimedes number. This last depends on the physical parameter of the particle and the carrying fluid. The numerical treatment of this interrelationship permitted to deduct an empirical model for the settling velocity of particles. This model is applied with success to the data of the considered measures and well compared to the results obtained by other models.

[1]  R. Ehrlich,et al.  An Exact Method for Characterization of Grain Shape , 1970 .

[2]  S. A. Morsi,et al.  An investigation of particle trajectories in two-phase flow systems , 1972, Journal of Fluid Mechanics.

[3]  P. Komar Settling Velocities of Circular Cylinders at Low Reynolds Numbers , 1980, The Journal of Geology.

[4]  B. J. Mason,et al.  The behaviour of freely falling cylinders and cones in a viscous fluid , 1965, Journal of Fluid Mechanics.

[5]  P. Komar,et al.  Settling Velocities of Irregular Grains at Low Reynolds Numbers , 1981 .

[6]  R. D. Felice,et al.  The sedimentation velocity of dilute suspensions of nearly monosized spheres , 1999 .

[7]  O. Levenspiel,et al.  Drag coefficient and terminal velocity of spherical and nonspherical particles , 1989 .

[8]  M. C. Powers A New Roundness Scale for Sedimentary Particles , 1953 .

[9]  Daniel D. Joseph,et al.  Aggregation and dispersion of spheres falling in viscoelastic liquids , 1994 .

[10]  R. Chhabra,et al.  Drag on discs and square plates in pseudoplastic polymer solutions , 1996 .

[11]  J. Boillat,et al.  Settling Velocities Of Spherical Particles In Turbulent Media , 1982 .

[12]  Sedimentation of complex-shaped particles in a square tank at low Reynolds numbers , 1994 .

[13]  W. Dietrich Settling velocity of natural particles , 1982 .

[14]  Patrick D. Weidman,et al.  Stokes drag on hollow cylinders and conglomerates , 1986 .

[15]  Prabhata K. Swamee,et al.  Closure of discussion on Drag coefficient and fall velocity of nonspherical particles , 1991 .

[16]  Richard Manasseh,et al.  Dynamics of dual-particles settling under gravity , 1998 .

[17]  H. Wadell Volume, Shape, and Roundness of Rock Particles , 1932, The Journal of Geology.

[18]  A. Acrivos,et al.  Stokes flow past a particle of arbitrary shape: a numerical method of solution , 1975, Journal of Fluid Mechanics.

[19]  Karel Svoboda,et al.  Free Settling of Nonspherical Particles , 1994 .

[20]  An experimental study of free fall of cones in Newtonian and Non-Newtonian media: drag coefficient and wall effects , 1991 .

[21]  G. Williams Particle roundness and surface texture effects on fall velocity , 1966 .

[22]  Sze-Foo Chien,et al.  Settling Velocity of Irregularly Shaped Particles , 1994 .

[23]  N. Cheng Simplified Settling Velocity Formula for Sediment Particle , 1997 .

[24]  R. Durand,et al.  VITESSE DE CHUTE DES GRAINS DE SABLE DANS LES FLUIDES EN MILIEU INFINI - Relation entre le coefficient de traînée et le coefficient de forme , 1953 .

[25]  Richard Turton,et al.  An explicit relationship to predict spherical particle terminal velocity , 1987 .

[26]  N. K. Sinha,et al.  Drag on non-spherical particles: an evaluation of available methods , 1999 .

[27]  Gary H. Ganser,et al.  A rational approach to drag prediction of spherical and nonspherical particles , 1993 .