Motion-responsive regions of the human brain

[1]  G. Orban NEURAL CODING IN AREA MT/V5 AND SATELLITES: FROM ANTAGONISTIC SURROUND TO THE EXTRACTION OF 3D STRUCTURE FROM MOTION , 2001 .

[2]  Ravi S. Menon,et al.  Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. , 1999, Journal of neurophysiology.

[3]  A. Berthoz,et al.  Functional MRI of galvanic vestibular stimulation. , 1998, Journal of neurophysiology.

[4]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[5]  Patrick Dupont,et al.  Human brain activity related to speed discrimination tasks , 1998, Experimental Brain Research.

[6]  M Dieterich,et al.  Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. , 1998, Brain : a journal of neurology.

[7]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[8]  Guldin Wo,et al.  Is there a vestibular cortex , 1998 .

[9]  Guy A. Orban,et al.  The neuronal machinery involved in successive orientation discrimination , 1998, Progress in Neurobiology.

[10]  O. Grüsser,et al.  Is there a vestibular cortex? , 1998, Trends in Neurosciences.

[11]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[12]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[13]  G A Orban,et al.  Human brain regions involved in direction discrimination. , 1998, Journal of neurophysiology.

[14]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[15]  G A Orban,et al.  Human cerebral activity evoked by motion reversal and motion onset. A PET study. , 1998, Brain : a journal of neurology.

[16]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[17]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[18]  E. DeYoe,et al.  Graded effects of spatial and featural attention on human area MT and associated motion processing areas. , 1997, Journal of neurophysiology.

[19]  J V Haxby,et al.  Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. , 1997, Journal of neurophysiology.

[20]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[21]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[22]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[23]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[24]  R. S. J. Frackowiak,et al.  The Activity in Human Areas V1/V2, V3, and V5 during the Perception of Coherent and Incoherent Motion , 1996, NeuroImage.

[25]  Guy Marchal,et al.  Multi-modality image registration by maximization of mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[26]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[28]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[29]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[31]  W Singer,et al.  Metabolic mapping of visual areas in the behaving cat: A[14C]2‐deoxyglucose study , 1995, The Journal of comparative neurology.

[32]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  G. Orban,et al.  A motion area in human visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  S Zeki,et al.  The brain activity related to residual motion vision in a patient with bilateral lesions of V5. , 1994, Brain : a journal of neurology.

[36]  Richard S. J. Frackowiak,et al.  Cortical control of saccades and fixation in man. A PET study. , 1994, Brain : a journal of neurology.

[37]  S. Zeki,et al.  The cerebral activity related to the visual perception of forward motion in depth. , 1994, Brain : a journal of neurology.

[38]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[39]  G. Orban,et al.  Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. , 1994, Journal of neurophysiology.

[40]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[41]  John C. Gore,et al.  Brain activation associated with visual motion studied by functional magnetic resonance imaging in humans , 1994 .

[42]  Guy A. Orban,et al.  Motion Processing in Monkey Striate Cortex , 1994 .

[43]  Kathleen S. Rockland,et al.  Primary Visual Cortex in Primates , 1994, Cerebral Cortex.

[44]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[45]  Michael E. Goldberg,et al.  Posterior Cingulate Cortex and Visuospatial Cognition: Properties of Single Neurons in the Behaving Monkey , 1993 .

[46]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[47]  T. Paus,et al.  Medial vs lateral frontal lobe lesions and differential impairment of central-gaze fixation maintenance in man. , 1991, Brain : a journal of neurology.

[48]  Karl J. Friston,et al.  Comparing Functional (PET) Images: The Assessment of Significant Change , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[49]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  O. Grüsser,et al.  Vestibular neurones in the parieto‐insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. , 1990, The Journal of physiology.

[51]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[52]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[53]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[54]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[57]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[58]  A. J. Mistlin,et al.  Visual cells in the temporal cortex sensitive to face view and gaze direction , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[59]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[60]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[61]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.