Characterization of FLOWERING LOCUS C 5 in Brassica rapa L.

[1]  Runmao Lin,et al.  Improved Reference Genome Annotation of Brassica rapa by Pacific Biosciences RNA Sequencing , 2022, Frontiers in Plant Science.

[2]  Yutaka Suzuki,et al.  Characterization of Histone H3 Lysine 4 and 36 Tri-methylation in Brassica rapa L. , 2021, Frontiers in Plant Science.

[3]  E. Dennis,et al.  Genome Triplication Leads to Transcriptional Divergence of FLOWERING LOCUS C Genes During Vernalization in the Genus Brassica , 2021, Frontiers in Plant Science.

[4]  K. Geuten,et al.  The Role of FLOWERING LOCUS C Relatives in Cereals , 2020, Frontiers in Plant Science.

[5]  P. Bayer,et al.  Assembly of the non‐heading pak choi genome and comparison with the genomes of heading Chinese cabbage and the oilseed yellow sarson , 2020, Plant biotechnology journal.

[6]  Kevin Williams,et al.  Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus , 2020, The New phytologist.

[7]  Hongkun Zheng,et al.  A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis] , 2020, Horticulture Research.

[8]  Yutaka Suzuki,et al.  The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L. , 2019, DNA research : an international journal for rapid publication of reports on genes and genomes.

[9]  E. Dennis,et al.  The role of FRIGIDA and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables , 2019, Scientific Reports.

[10]  M. Seki,et al.  Long noncoding RNAs in Brassica rapa L. following vernalization , 2019, Scientific Reports.

[11]  Hongkun Zheng,et al.  A Genomic Variation Map Provides Insights into the Genetic Basis of Spring Chinese Cabbage (Brassica rapa ssp. pekinensis) Selection. , 2018, Molecular plant.

[12]  F. Denoeud,et al.  Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps , 2018, Nature Plants.

[13]  M. El-Esawi Brassica Germplasm - Characterization, Breeding and Utilization , 2018 .

[14]  Xiaowu Wang,et al.  BrFLC5: a weak regulator of flowering time in Brassica rapa , 2018, Theoretical and Applied Genetics.

[15]  A. Akter,et al.  Genetic and Epigenetic Regulation of Vernalization in Brassicaceae , 2018, Brassica Germplasm - Characterization, Breeding and Utilization.

[16]  E. Fukai,et al.  The role of FLOWERING LOCUS C in vernalization of Brassica: the importance of vernalization research in the face of climate change , 2018, Crop and Pasture Science.

[17]  Aaron P. Ragsdale,et al.  Genomic inferences of domestication events are corroborated by written records in Brassica rapa , 2017, bioRxiv.

[18]  E. Dennis,et al.  Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis , 2016 .

[19]  E. Dennis,et al.  Development of primer sets that can verify the enrichment of histone modifications, and their application to examining vernalization-mediated chromatin changes in Brassica rapa L. , 2016, Genes & genetic systems.

[20]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[21]  Chien-Chi Lo,et al.  Rapid evaluation and quality control of next generation sequencing data with FaQCs , 2014, BMC Bioinformatics.

[22]  S. Yokoi,et al.  A naturally occurring long insertion in the first intron in the Brassica rapaFLC2 gene causes delayed bolting , 2014, Euphytica.

[23]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[24]  K. Hatakeyama,et al.  Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou , 2011 .

[25]  G. Bonnema,et al.  BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa , 2010, Journal of experimental botany.

[26]  T. Nishio,et al.  A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits , 2009, DNA Research.

[27]  G. Bonnema,et al.  A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time , 2009, Journal of experimental botany.

[28]  Jung Sun Kim,et al.  Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapaL. ssp. pekinensis) , 2007, Plant Cell Reports.

[29]  T. Nishio,et al.  Characterization of DNA methyltransferase genes in Brassica rapa. , 2006, Genes & genetic systems.

[30]  Jung Sun Kim,et al.  Sequence-Level Analysis of the Diploidization Process in the Triplicated FLOWERING LOCUS C Region of Brassica rapa[W][OA] , 2006, The Plant Cell Online.

[31]  R. Amasino,et al.  Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. , 2002, Genetics.

[32]  R. Amasino,et al.  Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. , 2000, Science.

[33]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[34]  W. F. Thompson,et al.  Rapid isolation of high molecular weight plant DNA. , 1980, Nucleic acids research.

[35]  A. Akter,et al.  Gene Expression Analysis in Response to Vernalization in Chinese Cabbage (Brassica rapa L.) , 2020, The Horticulture Journal.

[36]  A. Akter,et al.  The Importance of Genetic and Epigenetic Research in the Brassica Vegetables in the Face of Climate Change , 2020 .

[37]  T. Kakizaki,et al.  Comparison of Cold Responses for Orthologs of Cabbage Vernalization-related Genes , 2019, The Horticulture Journal.

[38]  Hongkun Zheng,et al.  Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies , 2018 .

[39]  Kenji Osabe,et al.  Epigenetic regulation of agronomical traits in Brassicaceae , 2017, Plant Cell Reports.

[40]  J. Townsend,et al.  NIH Public Access Author Manuscript , 2006 .