A new life for sterile neutrino dark matter after the pandemic
暂无分享,去创建一个
[1] M. Laletin,et al. Impact of dark matter self-scattering on its relic abundance , 2022, Physical Review D.
[2] M. Lattanzi,et al. Synergy between cosmological and laboratory searches in neutrino physics , 2022, 2203.07377.
[3] K. Tuominen,et al. Momentum distributions of cosmic relics: Improved analysis , 2022, Physical Review D.
[4] W. Rodejohann,et al. Sterile neutrino dark matter production in presence of non-standard neutrino self-interactions: an EFT approach , 2021, 2112.00758.
[5] C. Giunti,et al. Pseudoscalar sterile neutrino self-interactions in light of Planck, SPT and ACT data , 2021, Journal of Cosmology and Astroparticle Physics.
[6] V. Takhistov,et al. Cosmological dependence of sterile neutrino dark matter with self-interacting neutrinos , 2021, Journal of Cosmology and Astroparticle Physics.
[7] M. Laletin,et al. Dark matter freeze-in from semi-production , 2021, Journal of High Energy Physics.
[8] T. Bringmann,et al. Dark Matter from Exponential Growth. , 2021, Physical review letters.
[9] F. Zimmer,et al. Decaying dark matter in dwarf spheroidal galaxies: Prospects for x-ray and gamma-ray telescopes , 2021, Physical Review D.
[10] F. Zimmer,et al. Searches for sterile neutrinos and axionlike particles from the Galactic halo with eROSITA , 2021, Physical Review D.
[11] R. Essig,et al. The cosmological evolution of self-interacting dark matter , 2021, 2102.06215.
[12] K. Cranmer,et al. Deep Search for Decaying Dark Matter with XMM-Newton Blank-Sky Observations. , 2021, Physical review letters.
[13] A. Schneider,et al. Dark acoustic oscillations: imprints on the matter power spectrum and the halo mass function , 2021, 2101.12229.
[14] M. Kaplinghat,et al. A Stringent Upper Limit on Dark Matter Self-Interaction Cross Section from Cluster Strong Lensing , 2020, 2012.06611.
[15] F. Cyr-Racine,et al. ETHOS ‐ an effective theory of structure formation: Impact of dark acoustic oscillations on cosmic dawn , 2020, Physical Review D.
[16] E. Bulbul,et al. Probing the Milky Way’s Dark Matter Halo for the 3.5 keV Line , 2020, The Astrophysical Journal.
[17] J. March-Russell,et al. Reproductive freeze-in of self-interacting dark matter , 2020, Physical Review D.
[18] T. Bringmann,et al. Precise dark matter relic abundance in decoupled sectors , 2020, Physics Letters B.
[19] C. Giunti,et al. Sterile neutrino self-interactions: H0 tension and short-baseline anomalies , 2020, Journal of Cosmology and Astroparticle Physics.
[20] Yue Zhang,et al. Origin of sterile neutrino dark matter via secret neutrino interactions with vector bosons , 2020, Physical Review D.
[21] M. Pospelov,et al. Dark Higgs dark matter , 2020, 2005.02397.
[22] S. Jana,et al. The Hubble tension and a renormalizable model of gauged neutrino self-interactions , 2020, Physical Review D.
[23] J. Lesgourgues,et al. Hints, neutrino bounds, and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data , 2020, Journal of Cosmology and Astroparticle Physics.
[24] J. Jochum,et al. eXTP perspectives for the νMSM sterile neutrino dark matter model , 2020, 2001.07014.
[25] Andrii Magalich,et al. How to constrain warm dark matter with the Lyman-α forest , 2019, Monthly Notices of the Royal Astronomical Society.
[26] F. Cyr-Racine,et al. Probing the small-scale matter power spectrum with large-scale 21-cm data , 2019, Physical Review D.
[27] Yue Zhang,et al. Dodelson-Widrow Mechanism in the Presence of Self-Interacting Neutrinos. , 2019, Physical review letters.
[28] C. A. Pires,et al. A cosmologically viable eV sterile neutrino model , 2019, Physics Letters B.
[29] J. Beacom,et al. NuSTAR tests of sterile-neutrino dark matter: New Galactic bulge observations and combined impact , 2019, Physical Review D.
[30] M. Hostert,et al. Dark neutrinos and a three-portal connection to the standard model , 2019, Physical Review D.
[31] S. Pascoli,et al. Neutrino portals to dark matter , 2019, The European Physical Journal C.
[32] F. Cyr-Racine,et al. ETHOS – an Effective Theory of Structure Formation: detecting dark matter interactions through the Lyman-α forest , 2018, Monthly Notices of the Royal Astronomical Society.
[33] A. Boyarsky,et al. Sterile neutrino Dark Matter , 2018, Progress in Particle and Nuclear Physics.
[34] J. Kopp,et al. Sterile neutrinos with secret interactions—cosmological discord? , 2018, Journal of Cosmology and Astroparticle Physics.
[35] M. Gonzalez-Garcia,et al. Cosmological constraints with self-interacting sterile neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.
[36] M. Reno,et al. Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background , 2018, Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020).
[37] A. Boyarsky,et al. Constraining self-interacting dark matter with scaling laws of observed halo surface densities , 2017, 1712.06602.
[38] S. Vogl,et al. Thermalizing Sterile Neutrino Dark Matter. , 2017, Physical review letters.
[39] S. Tulin,et al. Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.
[40] D. Gorbunov,et al. Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology , 2017, 1705.02184.
[41] K. Abazajian. Sterile neutrinos in cosmology , 2017, 1705.01837.
[42] A. Merle,et al. keV sterile neutrino dark matter from singlet scalar decays: the most general case , 2016, 1609.01289.
[43] M. Laveder,et al. Pseudoscalar—sterile neutrino interactions: reconciling the cosmos with neutrino oscillations , 2016, 1606.07673.
[44] H. Murayama,et al. Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term , 2016, 1602.07624.
[45] Harvard,et al. ETHOS - an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems , 2015, 1512.05349.
[46] Manoj Kaplinghat,et al. Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters. , 2015, Physical review letters.
[47] M. Archidiacono,et al. Sterile neutrinos with pseudoscalar self-interactions and cosmology , 2015, 1508.02504.
[48] O. Peres,et al. Hidden interactions of sterile neutrinos as a probe for new physics , 2015, 1507.06486.
[49] J. Kopp,et al. Sterile neutrinos with secret interactions—lasting friendship with cosmology , 2015, 1505.02795.
[50] Yong Tang. More is different: Reconciling eV sterile neutrinos with cosmological mass bounds , 2014, 1501.00059.
[51] J. Wells,et al. Neutrino Masses and Sterile Neutrino Dark Matter from the PeV Scale , 2014, 1412.4791.
[52] K. Tuominen,et al. Self-Interacting Dark Matter through the Higgs Portal , 2014, 1411.3730.
[53] A. Mirizzi,et al. Collisional production of sterile neutrinos via secret interactions and cosmological implications , 2014, 1410.1385.
[54] A. Mirizzi,et al. Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis , 2014, 1409.1680.
[55] D. Malyshev,et al. Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies , 2014, 1408.3531.
[56] M. Archidiacono,et al. Cosmology with self-interacting sterile neutrinos and dark matter: A pseudoscalar model , 2014, 1404.5915.
[57] P. Ko,et al. νΛMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2 , 2014, 1404.0236.
[58] A. Boyarsky,et al. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.
[59] M. Markevitch,et al. DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.
[60] J. Kopp,et al. Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure. , 2014, Physical review letters.
[61] T. Bringmann,et al. Tight bonds between sterile neutrinos and dark matter , 2013, 1312.4947.
[62] M. Kaplinghat,et al. Sterile neutrino dark matter bounds from galaxies of the Local Group , 2013, 1311.0282.
[63] S. Hannestad,et al. How self-interactions can reconcile sterile neutrinos with cosmology. , 2013, Physical review letters.
[64] F. Kahlhoefer,et al. Colliding clusters and dark matter self-interactions , 2013, 1308.3419.
[65] M. Gell-Mann,et al. Complex spinors and unified theories , 2013, 1306.4669.
[66] C. Cheung,et al. Origins of hidden sector dark matter I: cosmology , 2010, 1010.0022.
[67] L. Hall,et al. Freeze-in production of FIMP dark matter , 2009, 0911.1120.
[68] Torsten Bringmann,et al. Particle models and the small-scale structure of dark matter , 2009, 0903.0189.
[69] M. Pospelov. Secluded U(1) below the weak scale , 2008, 0811.1030.
[70] M. Pospelov,et al. Secluded WIMP Dark Matter , 2007, 0711.4866.
[71] K. Petraki,et al. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector , 2007, 0711.4646.
[72] Alexander Kusenko,et al. Sterile Neutrinos , 1999, hep-ph/9903261.
[73] T. Asaka,et al. Lightest sterile neutrino abundance within the nuMSM , 2006, hep-ph/0612182.
[74] A. Kusenko. Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.
[75] M. Shaposhnikov,et al. The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.
[76] Tsutomu Yanagida,et al. Horizontal gauge symmetry and masses of neutrinos , 2005 .
[77] A. Bettini. Status and Perspectives of Neutrino Physics , 2004, hep-ex/0411015.
[78] G. Fuller,et al. Direct Detection of Warm Dark Matter in the X-Ray , 2001, astro-ph/0106002.
[79] G. Fuller,et al. New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.
[80] Widrow,et al. Sterile neutrinos as dark matter. , 1993, Physical review letters.
[81] G. Senjanovic,et al. Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .
[82] S. Glashow,et al. The Future of Elementary Particle Physics , 1979 .
[83] P. Minkowski. μ→eγ at a rate of one out of 109 muon decays? , 1977 .
[84] P. Minkowski. /a ~ E~/at a Rate of One out of 10 9 Muon Decays? , 2002 .