A new life for sterile neutrino dark matter after the pandemic

We propose a novel mechanism to generate sterile neutrinos $\nu_s$ in the early Universe, by converting ordinary neutrinos $\nu_\alpha$ in scattering processes $\nu_s\nu_\alpha\to\nu_s\nu_s$. After initial production by oscillations, this leads to an exponential growth in the $\nu_s$ abundance. We show that such a production regime naturally occurs for self-interacting $\nu_s$, and that this opens up significant new parameter space where $\nu_s$ make up all of the observed dark matter. Our results provide strong motivation to further push the sensitivity of X-ray line searches, and to improve on constraints from structure formation.

[1]  M. Laletin,et al.  Impact of dark matter self-scattering on its relic abundance , 2022, Physical Review D.

[2]  M. Lattanzi,et al.  Synergy between cosmological and laboratory searches in neutrino physics , 2022, 2203.07377.

[3]  K. Tuominen,et al.  Momentum distributions of cosmic relics: Improved analysis , 2022, Physical Review D.

[4]  W. Rodejohann,et al.  Sterile neutrino dark matter production in presence of non-standard neutrino self-interactions: an EFT approach , 2021, 2112.00758.

[5]  C. Giunti,et al.  Pseudoscalar sterile neutrino self-interactions in light of Planck, SPT and ACT data , 2021, Journal of Cosmology and Astroparticle Physics.

[6]  V. Takhistov,et al.  Cosmological dependence of sterile neutrino dark matter with self-interacting neutrinos , 2021, Journal of Cosmology and Astroparticle Physics.

[7]  M. Laletin,et al.  Dark matter freeze-in from semi-production , 2021, Journal of High Energy Physics.

[8]  T. Bringmann,et al.  Dark Matter from Exponential Growth. , 2021, Physical review letters.

[9]  F. Zimmer,et al.  Decaying dark matter in dwarf spheroidal galaxies: Prospects for x-ray and gamma-ray telescopes , 2021, Physical Review D.

[10]  F. Zimmer,et al.  Searches for sterile neutrinos and axionlike particles from the Galactic halo with eROSITA , 2021, Physical Review D.

[11]  R. Essig,et al.  The cosmological evolution of self-interacting dark matter , 2021, 2102.06215.

[12]  K. Cranmer,et al.  Deep Search for Decaying Dark Matter with XMM-Newton Blank-Sky Observations. , 2021, Physical review letters.

[13]  A. Schneider,et al.  Dark acoustic oscillations: imprints on the matter power spectrum and the halo mass function , 2021, 2101.12229.

[14]  M. Kaplinghat,et al.  A Stringent Upper Limit on Dark Matter Self-Interaction Cross Section from Cluster Strong Lensing , 2020, 2012.06611.

[15]  F. Cyr-Racine,et al.  ETHOS ‐ an effective theory of structure formation: Impact of dark acoustic oscillations on cosmic dawn , 2020, Physical Review D.

[16]  E. Bulbul,et al.  Probing the Milky Way’s Dark Matter Halo for the 3.5 keV Line , 2020, The Astrophysical Journal.

[17]  J. March-Russell,et al.  Reproductive freeze-in of self-interacting dark matter , 2020, Physical Review D.

[18]  T. Bringmann,et al.  Precise dark matter relic abundance in decoupled sectors , 2020, Physics Letters B.

[19]  C. Giunti,et al.  Sterile neutrino self-interactions: H0 tension and short-baseline anomalies , 2020, Journal of Cosmology and Astroparticle Physics.

[20]  Yue Zhang,et al.  Origin of sterile neutrino dark matter via secret neutrino interactions with vector bosons , 2020, Physical Review D.

[21]  M. Pospelov,et al.  Dark Higgs dark matter , 2020, 2005.02397.

[22]  S. Jana,et al.  The Hubble tension and a renormalizable model of gauged neutrino self-interactions , 2020, Physical Review D.

[23]  J. Lesgourgues,et al.  Hints, neutrino bounds, and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data , 2020, Journal of Cosmology and Astroparticle Physics.

[24]  J. Jochum,et al.  eXTP perspectives for the νMSM sterile neutrino dark matter model , 2020, 2001.07014.

[25]  Andrii Magalich,et al.  How to constrain warm dark matter with the Lyman-α forest , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  F. Cyr-Racine,et al.  Probing the small-scale matter power spectrum with large-scale 21-cm data , 2019, Physical Review D.

[27]  Yue Zhang,et al.  Dodelson-Widrow Mechanism in the Presence of Self-Interacting Neutrinos. , 2019, Physical review letters.

[28]  C. A. Pires,et al.  A cosmologically viable eV sterile neutrino model , 2019, Physics Letters B.

[29]  J. Beacom,et al.  NuSTAR tests of sterile-neutrino dark matter: New Galactic bulge observations and combined impact , 2019, Physical Review D.

[30]  M. Hostert,et al.  Dark neutrinos and a three-portal connection to the standard model , 2019, Physical Review D.

[31]  S. Pascoli,et al.  Neutrino portals to dark matter , 2019, The European Physical Journal C.

[32]  F. Cyr-Racine,et al.  ETHOS – an Effective Theory of Structure Formation: detecting dark matter interactions through the Lyman-α forest , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  A. Boyarsky,et al.  Sterile neutrino Dark Matter , 2018, Progress in Particle and Nuclear Physics.

[34]  J. Kopp,et al.  Sterile neutrinos with secret interactions—cosmological discord? , 2018, Journal of Cosmology and Astroparticle Physics.

[35]  M. Gonzalez-Garcia,et al.  Cosmological constraints with self-interacting sterile neutrinos , 2018, Journal of Cosmology and Astroparticle Physics.

[36]  M. Reno,et al.  Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background , 2018, Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020).

[37]  A. Boyarsky,et al.  Constraining self-interacting dark matter with scaling laws of observed halo surface densities , 2017, 1712.06602.

[38]  S. Vogl,et al.  Thermalizing Sterile Neutrino Dark Matter. , 2017, Physical review letters.

[39]  S. Tulin,et al.  Dark Matter Self-interactions and Small Scale Structure , 2017, 1705.02358.

[40]  D. Gorbunov,et al.  Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology , 2017, 1705.02184.

[41]  K. Abazajian Sterile neutrinos in cosmology , 2017, 1705.01837.

[42]  A. Merle,et al.  keV sterile neutrino dark matter from singlet scalar decays: the most general case , 2016, 1609.01289.

[43]  M. Laveder,et al.  Pseudoscalar—sterile neutrino interactions: reconciling the cosmos with neutrino oscillations , 2016, 1606.07673.

[44]  H. Murayama,et al.  Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term , 2016, 1602.07624.

[45]  Harvard,et al.  ETHOS - an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems , 2015, 1512.05349.

[46]  Manoj Kaplinghat,et al.  Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters. , 2015, Physical review letters.

[47]  M. Archidiacono,et al.  Sterile neutrinos with pseudoscalar self-interactions and cosmology , 2015, 1508.02504.

[48]  O. Peres,et al.  Hidden interactions of sterile neutrinos as a probe for new physics , 2015, 1507.06486.

[49]  J. Kopp,et al.  Sterile neutrinos with secret interactions—lasting friendship with cosmology , 2015, 1505.02795.

[50]  Yong Tang More is different: Reconciling eV sterile neutrinos with cosmological mass bounds , 2014, 1501.00059.

[51]  J. Wells,et al.  Neutrino Masses and Sterile Neutrino Dark Matter from the PeV Scale , 2014, 1412.4791.

[52]  K. Tuominen,et al.  Self-Interacting Dark Matter through the Higgs Portal , 2014, 1411.3730.

[53]  A. Mirizzi,et al.  Collisional production of sterile neutrinos via secret interactions and cosmological implications , 2014, 1410.1385.

[54]  A. Mirizzi,et al.  Unveiling secret interactions among sterile neutrinos with big-bang nucleosynthesis , 2014, 1409.1680.

[55]  D. Malyshev,et al.  Constraints on 3.55 keV line emission from stacked observations of dwarf spheroidal galaxies , 2014, 1408.3531.

[56]  M. Archidiacono,et al.  Cosmology with self-interacting sterile neutrinos and dark matter: A pseudoscalar model , 2014, 1404.5915.

[57]  P. Ko,et al.  νΛMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2 , 2014, 1404.0236.

[58]  A. Boyarsky,et al.  Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.

[59]  M. Markevitch,et al.  DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.

[60]  J. Kopp,et al.  Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure. , 2014, Physical review letters.

[61]  T. Bringmann,et al.  Tight bonds between sterile neutrinos and dark matter , 2013, 1312.4947.

[62]  M. Kaplinghat,et al.  Sterile neutrino dark matter bounds from galaxies of the Local Group , 2013, 1311.0282.

[63]  S. Hannestad,et al.  How self-interactions can reconcile sterile neutrinos with cosmology. , 2013, Physical review letters.

[64]  F. Kahlhoefer,et al.  Colliding clusters and dark matter self-interactions , 2013, 1308.3419.

[65]  M. Gell-Mann,et al.  Complex spinors and unified theories , 2013, 1306.4669.

[66]  C. Cheung,et al.  Origins of hidden sector dark matter I: cosmology , 2010, 1010.0022.

[67]  L. Hall,et al.  Freeze-in production of FIMP dark matter , 2009, 0911.1120.

[68]  Torsten Bringmann,et al.  Particle models and the small-scale structure of dark matter , 2009, 0903.0189.

[69]  M. Pospelov Secluded U(1) below the weak scale , 2008, 0811.1030.

[70]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[71]  K. Petraki,et al.  Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector , 2007, 0711.4646.

[72]  Alexander Kusenko,et al.  Sterile Neutrinos , 1999, hep-ph/9903261.

[73]  T. Asaka,et al.  Lightest sterile neutrino abundance within the nuMSM , 2006, hep-ph/0612182.

[74]  A. Kusenko Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.

[75]  M. Shaposhnikov,et al.  The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.

[76]  Tsutomu Yanagida,et al.  Horizontal gauge symmetry and masses of neutrinos , 2005 .

[77]  A. Bettini Status and Perspectives of Neutrino Physics , 2004, hep-ex/0411015.

[78]  G. Fuller,et al.  Direct Detection of Warm Dark Matter in the X-Ray , 2001, astro-ph/0106002.

[79]  G. Fuller,et al.  New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.

[80]  Widrow,et al.  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[81]  G. Senjanovic,et al.  Neutrino Mass and Spontaneous Parity Nonconservation , 1980 .

[82]  S. Glashow,et al.  The Future of Elementary Particle Physics , 1979 .

[83]  P. Minkowski μ→eγ at a rate of one out of 109 muon decays? , 1977 .

[84]  P. Minkowski /a ~ E~/at a Rate of One out of 10 9 Muon Decays? , 2002 .