Real-Time Neural Control of Mobile Robots

This chapter presents two application in real-time using neural controls for mobile robots. First, a decentralized inverse optimal neural control is developed for a Shrimp robot, which is a kind of mobile robot with has terrain adaptability. Additionally, a neural control is designed for driving a nonholonomic mobile robot integrating stereo vision feedback. The desired trajectory of the robot is computed during the navigation process using the stereo camera sensor. The proposed neural control approaches are based on discrete-time High Order Neural Networks (RHONN’s) trained with an extended Kalman filter (EKF).

[1]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[2]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[3]  Y.S. Kishore Babu,et al.  Sliding Mode Speed Control of a DC Motor , 2011, 2011 International Conference on Communication Systems and Network Technologies.

[4]  G. P. Liu Variable Structure Neural Control , 2001 .

[5]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1997, J. Intell. Robotic Syst..

[6]  Edgar N. Sanchez,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[7]  Rs Roel Pieters,et al.  Visual Servo Control , 2012 .

[8]  Kouhei Ohnishi,et al.  An architecture of decentralized control for multi-degrees of freedom parallel manipulator , 2002, 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No.02TH8623).

[9]  Jin Bae Park,et al.  A Simple Adaptive Control Approach for Trajectory Tracking of Electrically Driven Nonholonomic Mobile Robots , 2010, IEEE Transactions on Control Systems Technology.

[10]  C. Byrnes,et al.  Design of discrete-time nonlinear control systems via smooth feedback , 1994, IEEE Trans. Autom. Control..

[11]  Tomoki Ohsawa,et al.  Discrete Hamilton-Jacobi theory and discrete optimal control , 2010, 49th IEEE Conference on Decision and Control (CDC).

[12]  Kranthimanoj Nagothu,et al.  Control and simulation of robotic swarms in heterogeneous environments , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[13]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[14]  Aditya Mahajan,et al.  Optimal Decentralized Control of Coupled Subsystems With Control Sharing , 2011, IEEE Transactions on Automatic Control.

[15]  Alexander G. Loukianov,et al.  Real-time output tracking for induction motors by recurrent high-order neural network control , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[16]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[17]  Mo M. Jamshidi,et al.  Neural network based identification of robot dynamics used for neuro-fuzzy controller , 1997, Proceedings of International Conference on Robotics and Automation.

[18]  Zhong-Ping Jiang,et al.  Simultaneous tracking and stabilization of mobile robots: an adaptive approach , 2004, IEEE Transactions on Automatic Control.

[19]  Gerald Cook,et al.  Mobile Robots: Navigation, Control and Remote Sensing , 2011 .

[20]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[21]  A. Iftar,et al.  Decentralized optimal control with overlapping decompositions , 1991, IEEE 1991 International Conference on Systems Engineering.

[22]  Jong-Hwan Kim,et al.  Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots , 1999, IEEE Trans. Robotics Autom..

[23]  Zhong-Ping Jiang,et al.  A recursive technique for tracking control of nonholonomic systems in chained form , 1999, IEEE Trans. Autom. Control..

[24]  Mo M. Jamshidi,et al.  Sensor Fusion Based Autonomous Mobile Robot Navigation , 2007, 2007 IEEE International Conference on System of Systems Engineering.

[25]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[26]  L. J. Ricalde,et al.  Trajectory tracking via adaptive recurrent control with input saturation , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[27]  Mo Jamshidi,et al.  ANN-based sliding mode control for non-holonomic mobile robots , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[28]  John Holland,et al.  Designing Autonomous Mobile Robots: Inside the Mind of an Intelligent Machine , 2003 .

[29]  Jorge Angeles,et al.  Motion Study of an Omni-Directional Rover for Step Climbing , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[30]  Manolis A. Christodoulou,et al.  Adaptive Control with Recurrent High-order Neural Networks , 2000, Advances in Industrial Control.

[31]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[32]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[33]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems , 1992, 1992 American Control Conference.

[34]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Diego Andina,et al.  Distributed Bees Algorithm for Task Allocation in Swarm of Robots , 2012, IEEE Systems Journal.

[36]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[37]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[38]  Danil V. Prokhorov,et al.  Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks , 2003, Neural Networks.

[39]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[40]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[41]  Frank L. Lewis,et al.  Discrete-Time Nonlinear HJB Solution Using Approximate Dynamic Programming: Convergence Proof , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot using neural networks , 1998, IEEE Trans. Neural Networks.

[43]  Zongquan Deng,et al.  Kinematic modeling of a six-wheeled robotic rover with a passive/active suspension , 2011, 2011 9th World Congress on Intelligent Control and Automation.

[44]  Patrick Benavidez,et al.  Mobile robot navigation and target tracking system , 2011, 2011 6th International Conference on System of Systems Engineering.

[45]  Andrew Chi-Sing Leung,et al.  Dual extended Kalman filtering in recurrent neural networks , 2003, Neural Networks.

[46]  Alexander G. Loukianov,et al.  AVOIDING CONTROLLER SINGULARITIES IN ADAPTIVE RECURRENT NEURAL CONTROL , 2005 .

[47]  Heidar Ali Talebi,et al.  Neural Network-Based State Estimation of Nonlinear Systems , 2010 .

[48]  C. Abdallah,et al.  Optimal discrete-time control for non-linear cascade systems , 1998 .