Tunable Ultraviolet Photoresponse in Solution-Processed p-n Junction Photodiodes Based on Transition-Metal Oxides.

Solution-processed p-n heterojunction photodiodes have been fabricated based on transition-metal oxides in which NiO and ternary Zn(1-x)Mg(x)O (x = 0-0.1) have been employed as p-type and n-type semiconductors, respectively. Composition-related structural, electrical, and optical properties are also investigated for all the films. It has been observed that the bandgap of Zn(1-x)Mg(x)O films can be tuned between 3.24 and 3.49 eV by increasing Mg content. The fabricated highly visible-blind p-n junction photodiodes show an excellent rectification ratio along with good photoresponse and quantum efficiency under ultraviolet (UV) illumination. With an applied reverse bias of 1 V and depending on the value of x, the maximum responsivity of the devices varies between 0.22 and 0.4 A/W and the detectivity varies between 0.17 × 10(12) and 2.2 × 10(12) cm (Hz)(1/2)/W. The photodetectors show an excellent UV-to-visible rejection ratio. Compositional nonuniformity has been observed locally in the alloyed films with x = 0.1, which is manifested in photoresponse and X-ray analysis data. This paper demonstrates simple solution-processed, low cost, band tunable photodiodes with excellent figures of merit operated under low bias.

[1]  J. Temmyo,et al.  Carrier compensation by deep levels in Zn1−xMgxO/sapphire , 2009 .

[2]  I. Baumvol,et al.  Optical band gaps and composition dependence of hafnium–aluminate thin films grown by atomic layer chemical vapor deposition , 2005 .

[3]  Jaewoong Lee,et al.  Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector. , 2014, ACS applied materials & interfaces.

[4]  F. D. Auret,et al.  Electrical Characterization of 1.8 MeV Proton-Bombarded ZnO , 2001 .

[5]  Y. Gu,et al.  Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires , 2010, 1002.2812.

[6]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[7]  Z. Yin,et al.  Bandgap Tunable Zn1‐xMgxO Thin Films as Highly Transparent Cathode Buffer Layers for High‐Performance Inverted Polymer Solar Cells , 2014 .

[8]  D. Basak,et al.  Optical studies on MgxZn1−xO wide band gap semiconductor in the perspective of phase equilibrium , 2007 .

[9]  P. Bhattacharya,et al.  Comparative study of Mg doped ZnO and multilayer ZnO/MgO thin films , 2004 .

[10]  D. Shen,et al.  Ultraviolet photodetector based on a MgZnO film grown by radio-frequency magnetron sputtering. , 2009, ACS applied materials & interfaces.

[11]  S. Chaudhuri,et al.  Optical transmission and photoluminescence studies of ZnO–MgO nanocomposite thin films , 2005 .

[12]  C. Shan,et al.  Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection , 2007 .

[13]  Y. Vygranenko,et al.  Low leakage p-NiO/i-ZnO/n-ITO heterostructure ultraviolet sensor , 2006 .

[14]  D. Shen,et al.  High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film , 2014 .

[15]  Amanpal Singh,et al.  Investigation of phase segregation in sol–gel derived ZnMgO thin films , 2013 .

[16]  K. Boubaker,et al.  Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications , 2014 .

[17]  Mitsuaki Yano,et al.  Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented si substrate toward UV-detector applications , 2005 .

[18]  Huili Liang,et al.  Dual-band MgZnO ultraviolet photodetector integrated with Si , 2013 .

[19]  T. Venkatesan,et al.  Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films , 2002 .

[20]  D. Basak,et al.  Composition dependence of electrical and optical properties in sol-gel MgxZn1−xO thin films , 2007 .

[21]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[22]  K. Kawamura,et al.  Current injection emission from a transparent p-n junction composed of p-SrCu~2O~2/n-ZnO , 2000 .

[23]  S. Fujihara,et al.  Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films , 2001 .

[24]  Y. Xi,et al.  NiO / ZnO light emitting diodes by solution-based growth , 2008 .

[25]  John F. Muth,et al.  Optical and Structural Properties of Epitaxial MgxZn1-xO Alloys , 1999 .

[26]  Yong Hun Kwon,et al.  All oxide ultraviolet photodetectors based on a p-Cu2O film/n-ZnO heterostructure nanowires , 2014 .

[27]  K. Sun,et al.  High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing , 2013 .

[28]  J. Temmyo,et al.  High responsivity and internal gain mechanisms in Au-ZnMgO Schottky photodiodes , 2010 .

[29]  T. Maruyama,et al.  The electrochromic properties of nickel oxide thin films prepared by chemical vapor deposition , 1993 .

[30]  S. Chichibu,et al.  Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method , 2010 .

[31]  Xinman Chen,et al.  Tuning electrical properties of transparent p-NiO/n-MgZnO heterojunctions with band gap engineering of MgZnO , 2008 .

[32]  P. Bhattacharya,et al.  Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films , 2003 .

[33]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[34]  T. Minami Transparent conducting oxide semiconductors for transparent electrodes , 2005 .

[35]  G. Shukla Zn $_{1 - x}$ Mg $_{x}$ O Homojunction-Based Ultraviolet Photodetector , 2009 .

[36]  A. Motayed,et al.  A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector , 2015 .

[37]  Hideo Hosono,et al.  Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO , 2003 .

[38]  K. Hane,et al.  High-Sensitivity Mid-Ultraviolet Pt/Mg0.59Zn0.41O Schottky Photodiode on a ZnO Single Crystal Substrate , 2008 .

[39]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[40]  H. Koinuma,et al.  Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser , 1998 .

[41]  Shigeo Fujita,et al.  Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys (x≃0.5) and Their Application to Solar-Blind Region Photodetectors , 2003 .

[42]  Hongen Shen,et al.  Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films , 2001 .

[43]  B. Yao,et al.  Zn0.8Mg0.2O-based metal–semiconductor–metal photodiodes on quartz for visible-blind ultraviolet detection , 2007 .

[44]  K. Hane,et al.  Fabrication and characteristics of a Pt/MgxZn1–xO Schottky photodiode on a ZnO single crystal , 2008 .