The Effect of Broadband Matching in Simultaneous Information and Power Transfer

This paper presents the effect of broadband matching in simultaneous information and power transfer along with an implementation. The narrowband characteristic of antennas has limited the applications of simultaneous information and power transfer. The performance improvements in terms of channel capacity and power delivery under broadband matching have been demonstrated. Electromagnetic simulation and multiobjective optimization are performed to analyze the tradeoff between the channel capacity and power delivery in different matching conditions. The performance gain using the matching networks has been demonstrated and analyzed.

[1]  W. G. Tuller,et al.  Theoretical Limitations on the Rate of Transmission of Information , 1949, Proceedings of the IRE.

[2]  Gyuhae Park,et al.  RF Energy Transmission for a Low-Power Wireless Impedance Sensor Node , 2009, IEEE Sensors Journal.

[3]  Wasfy B. Mikhael,et al.  The Double Matching Problem: Analytic and Real Frequency Solutions , 1983 .

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  Jie Wu,et al.  A Fully Integrated 900-MHz Passive RFID Transponder Front End With Novel Zero-Threshold RF–DC Rectifier , 2009, IEEE Transactions on Industrial Electronics.

[6]  Chun-Chih Lo,et al.  Novel wireless impulsive power transmission to enhance the conversion efficiency for low input power , 2011, 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications.

[7]  Stavros Koulouridis Non-Foster design for antennas , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[8]  M. Salazar-Palma,et al.  A Look at the Concept of Channel Capacity from a Maxwellian Viewpoint , 2008, 2007 International Symposium on Signals, Systems and Electronics.

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  Anant Sahai,et al.  Shannon meets Tesla: Wireless information and power transfer , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  Quan Xue,et al.  Performance enhancement of microwave circuits using parallel-strip line , 2010, IEEE Potentials.

[12]  William C. Brown,et al.  The History of Power Transmission by Radio Waves , 1984 .

[13]  S. Koulouridis,et al.  A novel non-Foster broadband patch antenna , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[14]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[15]  L. Brillouin,et al.  Science and information theory , 1956 .

[16]  V. Belevitch,et al.  Elementary Applications of the Scattering Formalism in Network Design , 1956 .

[17]  Korkut Yegin,et al.  On the design of broad-band loaded wire antennas using the simplified real frequency technique and a genetic algorithm , 2003 .

[18]  W. G. Tuller Information Theory Applied to System Design , 1950, Transactions of the American Institute of Electrical Engineers.

[19]  J.T. Aberle,et al.  Two-Port Representation of an Antenna With Application to Non-Foster Matching Networks , 2008, IEEE Transactions on Antennas and Propagation.

[20]  Magnus Jonsson,et al.  Towards Reliable Wireless Industrial Communication With Real-Time Guarantees , 2009, IEEE Transactions on Industrial Informatics.

[21]  B. Yarman,et al.  A Simplified "Real Frequency" Technique Applied to Broad-Band Multistage Microwave Amplifiers , 1982 .

[22]  Roberto G. Rojas,et al.  Non-Foster impedance matching of electrically small antennas , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[23]  J. D. Krauss Antennas For All Applications , 1950 .

[24]  Ahmed Ashry,et al.  A Simple and Accurate Model for RFID Rectifier , 2008, IEEE Systems Journal.

[25]  M.C. van Beurden,et al.  Analytical models for low-power rectenna design , 2005, IEEE Antennas and Wireless Propagation Letters.

[26]  T. K. Sarkar,et al.  Analysis of Information and Power Transfer in Wireless Communications , 2013, IEEE Antennas and Propagation Magazine.

[27]  Andreas Willig,et al.  Recent and Emerging Topics in Wireless Industrial Communications: A Selection , 2008, IEEE Transactions on Industrial Informatics.

[28]  M.P. Flynn,et al.  An RF-powered, wireless CMOS temperature sensor , 2006, IEEE Sensors Journal.

[29]  Chi Hou Chan,et al.  Genetic algorithm optimized printed UWB sickle‐shape dipolar antenna with stable radiation pattern , 2007 .

[30]  Bart Nauwelaers,et al.  Matching network design of microstrip antennas with simplified real frequency technique , 1991 .

[31]  Bart Nauwelaers,et al.  Broadband active microstrip antenna design with the simplified real frequency technique , 1993 .

[32]  Tapan K. Sarkar Higher Order Basis Based Integral Equation Solver - HOBBIES , 2012 .

[33]  B. Yarman,et al.  A Simplified "Real Frequency" Technique Appliable To Broadband Multistage Microwave Amplifiers , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[34]  J. S. Colburn,et al.  A Non-Foster VHF Monopole Antenna , 2012, IEEE Antennas and Wireless Propagation Letters.