3D Localization of Pronuclei of Human Zygotes Using Textures from Multiple Focal Planes

We propose a technique for recovering the position and depth of pronuclei of human zygotes, from Z-stacks acquired using Hoffman Modulation Contrast microscopy. We use Local Binary Pattern features for describing local texture, and integrate information from multiple neighboring areas of the stack, including those where the object to be detected would appear defocused; interestingly, such defocused areas provide very discriminative information for detection. Experimental results confirm the effectiveness of our approach, which allows one to derive new 3D measurements for improved scoring of zygotes during In Vitro Fertilization.

[1]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[2]  Ian Witten,et al.  Data Mining , 2000 .

[3]  Vincent Lepetit,et al.  Fast Ray features for learning irregular shapes , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[6]  Luca Maria Gambardella,et al.  Simultaneous Focusing and Contouring of Human Zygotes for in Vitro Fertilization , 2010, BIOSIGNALS.

[7]  L. Gianaroli,et al.  Oocyte euploidy, pronuclear zygote morphology and embryo chromosomal complement. , 2007, Human reproduction.

[8]  Lauge Sørensen,et al.  Texture Classification in Lung CT Using Local Binary Patterns , 2008, MICCAI.

[9]  Juha Reunanen,et al.  Overfitting in Making Comparisons Between Variable Selection Methods , 2003, J. Mach. Learn. Res..

[10]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  C O S Sorzano,et al.  Quantitative morphometrical characterization of human pronuclear zygotes. , 2008, Human reproduction.

[13]  Christopher M. Bishop,et al.  Non-linear Bayesian Image Modelling , 2000, ECCV.

[14]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Gabor Fichtinger,et al.  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008, 11th International Conference, New York, NY, USA, September 6-10, 2008, Proceedings, Part I , 2008, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[16]  Metin Nafi Gürcan,et al.  Adaptive Discriminant Wavelet Packet Transform and Local Binary Patterns for Meningioma Subtype Classification , 2008, MICCAI.

[17]  Luca Maria Gambardella,et al.  Blastomere segmentation and 3D morphology measurements of early embryos from Hoffman Modulation Contrast image stacks , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[18]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[19]  Matti Pietikäinen,et al.  Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2000, ECCV.

[20]  A Finn,et al.  Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. , 2007, Human reproduction.