Functional organization of the transcriptome in human brain

[1]  S. Hohmann UNICELLSYS - Understanding the cell's functional organization , 2010 .

[2]  Jun Dong,et al.  Geometric Interpretation of Gene Coexpression Network Analysis , 2008, PLoS Comput. Biol..

[3]  S. Horvath,et al.  Variations in DNA elucidate molecular networks that cause disease , 2008, Nature.

[4]  Bin Zhang,et al.  Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R , 2008, Bioinform..

[5]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[6]  D. Stephan,et al.  A survey of genetic human cortical gene expression , 2007, Nature Genetics.

[7]  Peter Langfelder,et al.  Eigengene networks for studying the relationships between co-expression modules , 2007, BMC Systems Biology.

[8]  Huda Akil,et al.  Sample matching by inferred agonal stress in gene expression analyses of the brain , 2007, BMC Genomics.

[9]  Haifeng Li,et al.  Systematic discovery of functional modules and context-specific functional annotation of human genome , 2007, ISMB/ECCB.

[10]  Claes Nordborg,et al.  Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension , 2007, Science.

[11]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[12]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[13]  Rebecca A. Ihrie,et al.  Cells in the astroglial lineage are neural stem cells , 2007, Cell and Tissue Research.

[14]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[15]  A. Álvarez-Buylla,et al.  Neural stem cells in mammalian development. , 2006, Current opinion in cell biology.

[16]  S. Horvath,et al.  Conservation and evolution of gene coexpression networks in human and chimpanzee brains , 2006, Proceedings of the National Academy of Sciences.

[17]  S. Nelson,et al.  Probing the transcriptome of neuronal cell types , 2006, Current Opinion in Neurobiology.

[18]  J. Barker,et al.  Identification of a Novel Oligodendrocyte Cell Adhesion Protein Using Gene Expression Profiling , 2006, The Journal of Neuroscience.

[19]  M. Webster,et al.  Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes , 2006, Molecular Psychiatry.

[20]  P. Hevezi,et al.  Gene expression analyses reveal molecular relationships among 20 regions of the human CNS , 2006, Neurogenetics.

[21]  J. Olson,et al.  Regional and cellular gene expression changes in human Huntington's disease brain. , 2006, Human molecular genetics.

[22]  Nader Sanai,et al.  Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells , 2006, The Journal of comparative neurology.

[23]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[24]  Y. Leea,et al.  Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target , 2006 .

[25]  M. Karas,et al.  Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis , 2005, Journal of neurochemistry.

[26]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[27]  S. Horvath,et al.  A General Framework for Weighted Gene Co-Expression Network Analysis , 2005, Statistical applications in genetics and molecular biology.

[28]  Kenneth H Buetow,et al.  Detecting false expression signals in high-density oligonucleotide arrays by an in silico approach. , 2005, Genomics.

[29]  Kazuya Iwamoto,et al.  Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. , 2005, Human molecular genetics.

[30]  J. Morgan,et al.  Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and pcd(3J) mice. , 2004, Brain research. Molecular brain research.

[31]  E. Koonin,et al.  Conservation and coevolution in the scale-free human gene coexpression network. , 2004, Molecular biology and evolution.

[32]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[33]  Sven Bergmann,et al.  Defining transcription modules using large-scale gene expression data , 2004, Bioinform..

[34]  E. Eichler,et al.  Regional patterns of gene expression in human and chimpanzee brains. , 2004, Genome research.

[35]  I. Kohane,et al.  Gene regulation and DNA damage in the ageing human brain , 2004, Nature.

[36]  W. Wong,et al.  Molecular diversity of astrocytes with implications for neurological disorders. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Homin K. Lee,et al.  Coexpression analysis of human genes across many microarray data sets. , 2004, Genome research.

[38]  S. Pääbo,et al.  A Neutral Model of Transcriptome Evolution , 2004, PLoS biology.

[39]  K. Iwamoto,et al.  Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders , 2004, Molecular Psychiatry.

[40]  Mitchel S. Berger,et al.  Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration , 2004, Nature.

[41]  S. Asai,et al.  Profiling of genes associated with transcriptional responses in mouse hippocampus after transient forebrain ischemia using high-density oligonucleotide DNA array. , 2004, Brain research. Molecular brain research.

[42]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[43]  Berend Snel,et al.  Gene co-regulation is highly conserved in the evolution of eukaryotes and prokaryotes. , 2004, Nucleic acids research.

[44]  Matthew A. Zapala,et al.  Elevated gene expression levels distinguish human from non-human primate brains , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[46]  Douglas A. Hosack,et al.  Identifying biological themes within lists of genes with EASE , 2003, Genome Biology.

[47]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[48]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[49]  S. Pääbo,et al.  Intra- and Interspecific Variation in Primate Gene Expression Patterns , 2002, Science.

[50]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[51]  M. Nieto,et al.  Neural bHLH Genes Control the Neuronal versus Glial Fate Decision in Cortical Progenitors , 2001, Neuron.

[52]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[53]  S. Hockfield,et al.  A family of proteins implicated in axon guidance and outgrowth. , 1999, Journal of neurobiology.

[54]  G. Rougon,et al.  mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult , 1996, Neuroscience.