A Markov Chain-Based Testability Growth Model With a Cost-Benefit Function

In this paper, we propose a Markov chain-based testability growth model (TGM) for the just in-time fix program. This model can help the system designers to manage the testability growth process during system maturation. We also derive a cost-benefit model for allocating test resources to optimize a specified testability metric subject to a constraint on cumulative test cost. Bayesian inference, coupled with a hybrid genetic and particle swarm optimization method, is used to estimate the parameters of the TGM from evolving data, and the resulting model is utilized to track and project the testability metric. A near-optimal Lagrangian relaxation-based algorithm is applied to solve the test resource allocation problem. The testability growth and resource allocation models are validated via simulation examples. Results show that the model and algorithms presented in this paper have the potential to efficiently manage the testability growth problem.

[1]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[2]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[3]  Ananda Sen,et al.  A survey of discrete reliability-growth models , 1996, IEEE Trans. Reliab..

[4]  John Quigley,et al.  Cost–benefit modelling for reliability growth , 2003, J. Oper. Res. Soc..

[5]  Min Xie,et al.  A Study of Lifetime Optimization of Transportation System , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[6]  Yuan-Shun Dai,et al.  Modeling and analysis of correlated software failures of multiple types , 2005, IEEE Trans. Reliab..

[7]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[8]  G. J. Gibson,et al.  Reliability fix effectiveness factor estimation , 1989, Proceedings., Annual Reliability and Maintainability Symposium.

[9]  M. Pirlot General local search methods , 1996 .

[10]  Amrit L. Goel,et al.  Time-Dependent Error-Detection Rate Model for Software Reliability and Other Performance Measures , 1979, IEEE Transactions on Reliability.

[11]  D. Coit Economic allocation of test times for subsystem-level reliability growth testing , 1998 .

[12]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[13]  H. Weiss Estimation of Reliability Growth in a Complex System with a Poisson-Type Failure , 1956 .

[14]  Vidya S. Taneja Reliability growth models for NASA applications , 1991 .

[15]  Duane L. Dietrich,et al.  A Bayes Reliability Growth Model for A Development Testing Program , 1987, IEEE Transactions on Reliability.

[16]  Jian Li,et al.  Mean Variance Analysis of Fast Fashion Supply Chains With Returns Policy , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[17]  Alfredo Vaccaro,et al.  Decentralized Economic Dispatch in Smart Grids by Self-Organizing Dynamic Agents , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[18]  Krishna R. Pattipati,et al.  Optimal Selection of Imperfect Tests for Fault Detection and Isolation , 2013, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[19]  A. F. M. Smith,et al.  A Bayesian NoteonReliability GrowthDuring aDevelopment Testing Program , 1977 .

[20]  Qi Liu,et al.  Dynamic Bayesian Evaluation Method for System Reliability Growth Based on In-Time Correction , 2010, IEEE Transactions on Reliability.

[21]  Arthur C. Sanderson,et al.  Multiobjective Evolutionary Decision Support for Design–Supplier–Manufacturing Planning , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[22]  J. T. Duane Learning Curve Approach to Reliability Monitoring , 1964, IEEE Transactions on Aerospace.

[23]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[24]  Chenxu Zhao,et al.  A testability growth model and its application , 2014, 2014 IEEE AUTOTEST.

[25]  Krishna R. Pattipati,et al.  A Lagrangian Relaxation Algorithm for Finding the MAP Configuration in QMR-DT , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[26]  Tongdan Jin,et al.  A Multiphase Decision Model for System Reliability Growth With Latent Failures , 2013, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[27]  城川 俊一,et al.  Problems in System Reliability Analysis , 1984 .