Degree bounds and lifting techniques for triangular sets

We study the representation of the solutions of a polynomial system by triangular sets, and concentrate on the positive-dimensional case. We reduce to dimension zero by placing the free variables in the base-field, so the solutions can be represented by triangular sets with coefficients in a rational function field. First, we give bounds on the degree of these coefficients; then we show how to apply lifting techniques in this context, and point out the role played by the evaluation properties of the input system. Our algorithms are implemented in Magma; we present two applications.

[1]  Teresa Krick,et al.  On Intrinsic Bounds in the Nullstellensatz , 1997, Applicable Algebra in Engineering, Communication and Computing.

[2]  Pierrick Gaudry,et al.  Algorithmique des courbes hyperelliptiques et applications à la cryptologie , 2000 .

[3]  Sally Morrison The Differential Ideal [P]: Minfty , 1999, J. Symb. Comput..

[4]  Joos Heintz,et al.  Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..

[5]  Éric Schost,et al.  Computing Parametric Geometric Resolutions , 2003, Applicable Algebra in Engineering, Communication and Computing.

[6]  J. E. Morais,et al.  Lower Bounds for diophantine Approximation , 1996 .

[7]  Agnes Szanto,et al.  Computation with polynomial systems , 1999 .

[8]  Sally Morrison The Differential Ideal [ P ] : M ∞ , 1999 .

[9]  Marc Moreno Maza,et al.  Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .

[10]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[11]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[12]  Eric Schost Sur la resolution des systemes polynomiaux a parametres , 2000 .

[13]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[14]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[15]  Giovanni Gallo,et al.  Efficient algorithms and bounds for Wu-Ritt characteristic sets , 1991 .

[16]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[17]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[18]  Stéphane Dellière Triangularisation de systèmes constructibles : application à l'évaluation dynamique , 1999 .

[19]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[20]  K. B. O’Keefe,et al.  The differential ideal $[uv]$ , 1966 .

[21]  Éric Schost,et al.  On the Invariants of the Quotients of the Jacobian of a Curve of Genus 2 , 2001, AAECC.

[22]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[23]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[24]  P. Aubry,et al.  Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .