Ultra-High Q of 11000 in Surface Acoustic Wave Resonators by Dispersive Modulation

In this work, a method to reduce the acoustic energy loss has been proposed, and the GHz ultra-high <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula> acoustic wave resonators based on the LiTaO3-on-SiC (LTOSiC) substrate were demonstrated. By modulating the ratio of the LiTaO3 film thickness to interdigital transducer pitch (<inline-formula> <tex-math notation="LaTeX">${h}_{\textit {LT}}/\lambda {)}$ </tex-math></inline-formula>, the adjoined X and Z polarization components of the guided shear horizontal surface acoustic wave (SH-SAW) can be significantly diminished, and the acoustic energy loss can be effectively reduced. The modulated dispersive SH-SAW resonator shows an excellent Bode-<inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula> of 11000 and a Figure of merit (FoM) of 620. In addition, as predicted by the propagation loss of the acoustic delay lines on LTOSiC, high <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula> factors can be achieved when <inline-formula> <tex-math notation="LaTeX">${h}_{\textit {LT}}/\lambda $ </tex-math></inline-formula> is less than 0.14. These results suggest the feasibility of developing low-loss acoustic devices on the LTOSiC substrate for wireless communications.

[1]  Kai Huang,et al.  Gigahertz Acoustic Delay Lines in Lithium Niobate on Silicon Carbide With Propagation-Q of 11174 , 2023, IEEE Electron Device Letters.

[2]  Ming Li,et al.  High Performance SAW Resonators Using LiTaO3/SiO2/4H-SiC Multilayer Substrate , 2022, IEEE Electron Device Letters.

[3]  Kai Huang,et al.  Exploring Low-Loss Surface Acoustic Wave Devices on Heterogeneous Substrates , 2022, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[4]  K. Hashimoto,et al.  Double Busbar Structure for Transverse Energy Leakage and Resonance Suppression in Surface Acoustic Wave Resonators Using 42°YX-Lithium Tantalate Thin Plate , 2022, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[5]  Ruochen Lu,et al.  Acoustic Loss of GHz Higher-Order Lamb Waves in Thin-Film Lithium Niobate: A Comparative Study , 2021, Journal of Microelectromechanical Systems.

[6]  T. You,et al.  High Frequency, Low Loss and Low TCF Acoustic Devices on LiTaO3-on-SiC Substrate , 2021, 2021 IEEE International Ultrasonics Symposium (IUS).

[7]  Yansong Yang,et al.  X-Band Miniature Filters Using Lithium Niobate Acoustic Resonators and Bandwidth Widening Technique , 2021, IEEE Transactions on Microwave Theory and Techniques.

[8]  S. Ballandras,et al.  Innovative Smart Cut™ Piezo On Insulator (POI) Substrates for 5G acoustic filters , 2020, 2020 IEEE International Electron Devices Meeting (IEDM).

[9]  S. Ballandras,et al.  Smart Cut™ Piezo On Insulator (POI) substrates for high performances SAW components , 2020, 2020 IEEE International Ultrasonics Symposium (IUS).

[10]  Ruochen Lu,et al.  Surface Acoustic Wave Devices Using Lithium Niobate on Silicon Carbide , 2020, IEEE Transactions on Microwave Theory and Techniques.

[11]  A. Singhal,et al.  Scattering and Backscattering Study of Mechanical Plane Wave in Composite Materials Plates (Earth model 1066B and LiNbO3) , 2020 .

[12]  Natalya Naumenko,et al.  LiNbO3 Plate Bonded to Quartz as a Substrate for High Frequency Wideband SAW Devices , 2019, 2019 IEEE International Ultrasonics Symposium (IUS).

[13]  K. Hashimoto,et al.  Full 3D FEM Analysis of Scattering at a Border Between IDT and Reflector in SAW Resonators , 2019, 2019 IEEE International Ultrasonics Symposium (IUS).

[14]  K. Hashimoto,et al.  The modeling of the transverse mode in TC-SAW using SiO2/LiNbO3 structure , 2019, Japanese Journal of Applied Physics.

[15]  K. Hashimoto,et al.  3D FEM simulation of SAW resonators using hierarchical cascading technique and general purpose graphic processing unit , 2019, Japanese Journal of Applied Physics.

[16]  Ming-Huang Li,et al.  Gigahertz Low-Loss and Wideband S0 Mode Lithium Niobate Acoustic Delay Lines , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[17]  K. Hashimoto,et al.  Analysis of SAW Scattering With Discontinuous Periodic Gratings Using Travelling Wave Excitation and Hierarchical Cascading Technique , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[18]  T. Kenny,et al.  Direct Detection of Akhiezer Damping in a Silicon MEMS Resonator , 2019, Scientific Reports.

[19]  T. Nakao,et al.  High-Performance SAW Resonator With Simplified LiTaO3/SiO2 Double Layer Structure on Si Substrate , 2019, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[20]  Tetsuya Kimura,et al.  Comparative Study of Acoustic Wave Devices Using Thin Piezoelectric Plates in the 3–5-GHz Range , 2019, IEEE Transactions on Microwave Theory and Techniques.

[21]  T. Nakao,et al.  Transverse Modes in I.H.P. SAW Resonator and Their Suppression Method , 2018, 2018 IEEE International Ultrasonics Symposium (IUS).

[22]  M. Solal,et al.  Spurious Free SAW Resonators on Layered Substrate with Ultra-High Q, High Coupling and Small TCF , 2018, 2018 IEEE International Ultrasonics Symposium (IUS).

[23]  T. Nakao,et al.  I.H.P. SAW technology and its application to micro acoustic components , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[24]  R. Hammond,et al.  Acoustic radiation from ends of IDT in synchronous LSAW resonators , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[25]  T. Nakao,et al.  High-Performance SAW Resonator on New Multilayered Substrate Using LiTaO3 Crystal , 2017, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[26]  R. Candler,et al.  Mode- and Direction-Dependent Mechanical Energy Dissipation in Single-Crystal Resonators due to Anharmonic Phonon-Phonon Scattering , 2016 .

[27]  F. Alzina,et al.  Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators , 2014 .

[28]  H. Nakamura,et al.  Reduction of transverse leakage for SAW resonators on LiTaO3 substrate , 2012, 2012 IEEE International Ultrasonics Symposium.

[29]  J. Gratier,et al.  Transverse modes suppression and loss reduction for buried electrodes SAW devices , 2010, 2010 IEEE International Ultrasonics Symposium.

[30]  Woo-Tae Park,et al.  Impact of geometry on thermoelastic dissipation in micromechanical resonant beams , 2006, Journal of Microelectromechanical Systems.

[31]  M. M. Salomaa,et al.  Asymmetric acoustic radiation in leaky SAW resonators on lithium tantalate , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[32]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[33]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .