Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis

Rapid purification by feedback--specifically, reducing the mean impurity faster than by measurement alone--can be achieved by choosing the eigenbasis of the density matrix to be unbiased relative to the measurement basis. Here we further examine the protocol introduced by Combes and Jacobs [Phys. Rev. Lett. 96, 010504 (2006)] involving continuous measurement of the observable J{sub z} for a D-dimensional system. We rigorously rederive the lower bound (2/3)(D+1) on the achievable speedup factor and also an upper bound, namely D{sup 2}/2, for all feedback protocols that use measurements in unbiased bases. Finally, we extend our results to n independent measurements on a register of n qubits and derive an upper bound on the achievable speedup factor that scales linearly with n.

[1]  Christoph Becher,et al.  Feedback cooling of a single trapped ion. , 2006, Physical review letters.

[2]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[3]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[4]  Simple formula for pooling knowledge about a quantum system (4 pages) , 2005, quant-ph/0503193.

[5]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[6]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[7]  V. Belavkin,et al.  Dynamical programming of continuously observed quantum systems , 2008, 0805.4741.

[8]  David J. Tannor,et al.  Optimal control of quantum dissipative dynamics: Analytic solution for cooling the three-level Λ system , 2004 .

[9]  Kurt Jacobs,et al.  Stochastic Processes for Physicists: Stochastic Processes for Physicists , 2010 .

[10]  Kurt Jacobs Feedback control for communication with non-orthogonal states , 2007, Quantum Inf. Comput..

[11]  Kurt Jacobs,et al.  Locally optimal control of quantum systems with strong feedback. , 2008, Physical review letters.

[12]  Farrokh Vatan,et al.  Algorithmic cooling and scalable NMR quantum computers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  N V Morrow,et al.  Feedback control of atomic motion in an optical lattice. , 2002, Physical review letters.

[14]  J. F. Ralph,et al.  Weak measurement and rapid state reduction in entangled bipartite quantum systems , 2007 .

[15]  Kurt Jacobs,et al.  Rapid-state purification protocols for a Cooper pair box , 2007 .

[16]  N. Oxtoby,et al.  Sensitivity and back action in charge qubit measurements by a strongly coupled single-electron transistor , 2006, cond-mat/0601035.

[17]  H. M. Wiseman Quantum trajectories and quantum measurement theory , 1996 .

[18]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[19]  Kurt Jacobs,et al.  Rapid measurement of quantum systems using feedback control. , 2007, Physical review letters.

[20]  Howard M. Wiseman,et al.  Replacing quantum feedback with open-loop control and quantum filtering , 2009, 0908.0198.

[21]  Joseph E. Reiner,et al.  Quantum feedback in a weakly driven cavity QED system , 2004 .

[22]  Kurt Jacobs,et al.  The equations of quantum feedback control in the regime of good control , 2009, Quantum Inf. Comput..

[23]  Robert L. Cook,et al.  Optical coherent state discrimination using a closed-loop quantum measurement , 2007, Nature.

[24]  Photon-by-photon feedback control of a single-atom trajectory , 2009, Nature.

[25]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[26]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[27]  Kurt Jacobs,et al.  Information-tradeoff relations for finite-strength quantum measurements , 2001 .

[28]  Kurt Jacobs,et al.  Information, disturbance and Hamiltonian quantum feedback control , 2001 .

[29]  Kurt Jacobs,et al.  Rapid-purification protocols for optical homodyning , 2008 .

[30]  Kurt Jacobs,et al.  Stochastic Processes for Physicists , 2010 .

[31]  A. Silberfarb,et al.  Quantum control of the hyperfine spin of a Cs atom ensemble. , 2007, Physical review letters.

[32]  Neil P. Oxtoby,et al.  Model for monitoring of a charge qubit using a radio-frequency quantum point contact including experimental imperfections , 2007, 0706.3527.

[33]  K. Jacobs,et al.  Rapid state-reduction of quantum systems using feedback control , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[34]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[35]  G. Rempe,et al.  Feedback on the motion of a single atom in an optical cavity. , 2002, Physical review letters.

[36]  H. M. Wiseman,et al.  Reconsidering rapid qubit purification by feedback , 2006, quant-ph/0603062.

[37]  Milburn,et al.  Quantum-mechanical model for continuous position measurements. , 1987, Physical review. A, General physics.

[38]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.

[39]  R. J. Schoelkopf,et al.  Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement , 2007 .

[40]  Austin P Lund,et al.  Feedback control of nonlinear quantum systems: a rule of thumb. , 2007, Physical review letters.

[41]  A. Jordan,et al.  Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis , 2006, cond-mat/0606676.

[42]  Howard M. Wiseman,et al.  Optimality of Feedback Control Strategies for Qubit Purification , 2008, Quantum Inf. Process..

[43]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[44]  K. Jacobs,et al.  LINEAR QUANTUM TRAJECTORIES : APPLICATIONS TO CONTINUOUS PROJECTION MEASUREMENTS , 1998 .

[45]  J. F. Ralph,et al.  Weak measurement and control of entanglement generation , 2007, 0709.4217.

[46]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[47]  David J. Tannor,et al.  On the interplay of control fields and spontaneous emission in laser cooling , 1999 .

[48]  R. Handel,et al.  Deterministic Dicke-state preparation with continuous measurement and control , 2004, quant-ph/0402137.

[49]  Kurt Jacobs How to project qubits faster using quantum feedback , 2003 .

[50]  Neil P. Oxtoby,et al.  Quantum trajectories for the realistic measurement of a solid-state charge qubit , 2005 .