Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate

[1]  D. Macfarlane,et al.  Hierarchical Mesoporous SnO2 Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO2 Reduction with High Efficiency and Selectivity. , 2017, Angewandte Chemie.

[2]  D. Macfarlane,et al.  Towards a better Sn: Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets , 2017 .

[3]  E. Kumacheva,et al.  Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate , 2016 .

[4]  James E. Pander,et al.  Probing the Mechanism of Aqueous CO2 Reduction on Post-Transition-Metal Electrodes using ATR-IR Spectroelectrochemistry , 2016 .

[5]  J. Nørskov,et al.  Electric Field Effects in Electrochemical CO2 Reduction , 2016 .

[6]  Oleksandr Voznyy,et al.  Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration , 2016, Nature.

[7]  E. Stach,et al.  Corrigendum: Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene , 2016, Nature Communications.

[8]  B. Pan,et al.  Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction , 2016, Nature Communications.

[9]  Byoungsu Kim,et al.  A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2. , 2016, ChemSusChem.

[10]  Zhimin Liu,et al.  Efficient Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture. , 2016, Angewandte Chemie.

[11]  Keywan Riahi,et al.  Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions , 2016, Nature Energy.

[12]  M. Koper,et al.  In Situ Spectroscopic Study of CO2 Electroreduction at Copper Electrodes in Acetonitrile , 2016 .

[13]  Tejs Vegge,et al.  Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. , 2016, ChemSusChem.

[14]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[15]  Kilian Muñiz,et al.  Titelbild: Strukturell definierte molekulare hypervalente Iod‐Katalysatoren für intermolekulare enantioselektive Reaktionen (Angew. Chem. 1/2016) , 2016 .

[16]  Seunghwan Lee,et al.  Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst. , 2015, Angewandte Chemie.

[17]  Jing Shen,et al.  Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. , 2015, The journal of physical chemistry letters.

[18]  J. Jacquemin,et al.  Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid , 2015, Angewandte Chemie.

[19]  S. Woo,et al.  Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2. , 2015, ChemSusChem.

[20]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[21]  Etsuko Fujita,et al.  CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. , 2015, Chemical reviews.

[22]  D. Vlachos,et al.  Mechanistic Insights into the Electrochemical Reduction of CO2 to CO on Nanostructured Ag Surfaces , 2015 .

[23]  M. Koper,et al.  Electrochemical CO2 Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd–Pt Nanoparticles , 2015 .

[24]  Andrew B. Bocarsly,et al.  Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy , 2015 .

[25]  M. Kanan,et al.  Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. , 2015, Journal of the American Chemical Society.

[26]  G. Olah,et al.  Recycling of Carbon Dioxide to Methanol and Derived Products — Closing the Loop , 2015 .

[27]  N. Dasgupta,et al.  Atomic layer deposition of metal sulfide materials. , 2015, Accounts of chemical research.

[28]  Matthew W. Kanan,et al.  Controlling H+ vs CO2 Reduction Selectivity on Pb Electrodes , 2015 .

[29]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[30]  Dennis Y.C. Leung,et al.  Electrochemical Reduction of Carbon Dioxide to Formic Acid , 2014 .

[31]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[32]  T. Meyer,et al.  Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. , 2014, Journal of the American Chemical Society.

[33]  R. Li,et al.  Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles , 2014 .

[34]  Yi Xie,et al.  All‐Surface‐Atomic‐Metal Chalcogenide Sheets for High‐Efficiency Visible‐Light Photoelectrochemical Water Splitting , 2014 .

[35]  P. Hirunsit Electroreduction of Carbon Dioxide to Methane on Copper, Copper–Silver, and Copper–Gold Catalysts: A DFT Study , 2013 .

[36]  J. J. Rehr,et al.  Ab initioBethe-Salpeter calculations of the x-ray absorption spectra of transition metals at theL-shell edges , 2012 .

[37]  Aron Walsh,et al.  Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3 , 2012 .

[38]  L. O’Dell,et al.  The dissolution mechanism of sulphur in hydrous silicate melts. I : assessment of analytical techniques in determining the sulphur speciation in iron-free to iron-poor glasses , 2012 .

[39]  Soft X-ray characterization of Zn(1-x)Sn(x)O(y) electronic structure for thin film photovoltaics. , 2012, Physical chemistry chemical physics : PCCP.

[40]  Matthew W. Kanan,et al.  Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. , 2012, Journal of the American Chemical Society.

[41]  J. J. Rehr,et al.  Theoretical optical and x-ray spectra of liquid and solid H 2 O , 2012 .

[42]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[43]  Gou-Jen Wang,et al.  Electrophoretic deposition of uniformly distributed TiO2 nanoparticles using an anodic aluminum oxide template for efficient photolysis , 2010, Nanotechnology.

[44]  Clifford P. Kubiak,et al.  Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels , 2009 .

[45]  T. Reda,et al.  Reversible interconversion of carbon dioxide and formate by an electroactive enzyme , 2008, Proceedings of the National Academy of Sciences.

[46]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[47]  P. Midgley,et al.  Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations , 2005 .

[48]  J. Kawai,et al.  Comparison of the Sn L edge X-ray absorption spectra and the corresponding electronic structure in Sn, SnO, and SnO2 , 2004 .