Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation

[1]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[2]  C. Tsallis,et al.  Anomalous diffusion: nonlinear fractional Fokker–Planck equation , 2002 .

[3]  M. Caputo,et al.  Time and spatial concentration profile inside a membrane by means of a memory formalism , 2008 .

[4]  M. Caputo,et al.  Memory formalism in the passive diffusion across highly heterogeneous systems , 2005 .

[5]  Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[7]  Dumitru Baleanu,et al.  Variational iteration method for the Burgers' flow with fractional derivatives—New Lagrange multipliers , 2013 .

[8]  Vahid Reza Hosseini,et al.  Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping , 2016, J. Comput. Phys..

[9]  Dumitru Baleanu,et al.  Fractional Constrained Systems and Caputo Derivatives , 2008 .

[10]  Hossein Jafari,et al.  Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation , 2009 .

[11]  S. Yousefi Finding a control parameter in a one-dimensional parabolic inverse problem by using the Bernstein Galerkin method , 2009 .

[12]  S. Yousefi,et al.  Satisfier function in Ritz–Galerkin method for the identification of a time-dependent diffusivity , 2012 .

[13]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[14]  Mauro Fabrizio,et al.  Damage and fatigue described by a fractional derivative model , 2015, J. Comput. Phys..

[15]  Ahmet Yildirim,et al.  Analytical approach to Fokker–Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method , 2010 .

[16]  S. Arabia,et al.  Properties of a New Fractional Derivative without Singular Kernel , 2015 .

[17]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[18]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  S. A. Yousefi,et al.  A numerical technique for solving a class of fractional variational problems , 2013, J. Comput. Appl. Math..

[20]  M. Caputo,et al.  Experimental and theoretical memory diffusion of water in sand , 2003 .

[21]  Dumitru Baleanu,et al.  A Spectral Legendre–Gauss–Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients , 2013 .

[22]  Shaher Momani,et al.  Numerical solution of Fokker–Planck equation with space- and time-fractional derivatives , 2007 .

[23]  H. Jafari,et al.  A Numerical Approach to Fokker-Planck Equation with Space-and Time-Fractional and Non Fractional Derivatives , 2022 .