Solution-Processed Organic Solar Cells

Organic solar cells, based on polymer/fullerene-blend films, are advancing rapidly toward commercial viability. In this article, we review recent progress on two issues critical for technological applications: device photovoltaic efficiencies and processing technologies for high-throughput production. In terms of device efficiencies, we consider advances in low-bandgap polymers, film morphology, and davice structure aimed at increasing efficiencies beyond 5%. We than review recent progress in developing high-throughput, solution-printing-based processes for low-cost device fabrication.

[1]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[2]  Christoph J. Brabec,et al.  Production Aspects of Organic Photovoltaics and Their Impact on the Commercialization of Devices , 2005 .

[3]  Weimin Zhang,et al.  Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. , 2008, Journal of the American Chemical Society.

[4]  René A. J. Janssen,et al.  Realization of large area flexible fullerene — conjugated polymer photocells: A route to plastic solar cells , 1999 .

[5]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[6]  Juhwan Kim,et al.  Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation , 2007 .

[7]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[8]  Nasser N Peyghambarian,et al.  Fabrication of bulk heterojunction plastic solar cells by screen printing , 2001 .

[9]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[10]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[11]  N. S. Sariciftci,et al.  Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration , 2005 .

[12]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[13]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[14]  René A. J. Janssen,et al.  Polymer-Fullerene Bulk Heterojunction Solar Cells , 2005 .

[15]  A. Chiche,et al.  Charge separation at self-assembled nanostructured bulk interface in block copolymers. , 2006, Angewandte Chemie.

[16]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[17]  Frederik C. Krebs,et al.  Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate , 2004 .

[18]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[19]  Christoph J. Brabec,et al.  Performance Analysis of Printed Bulk Heterojunction Solar Cells , 2006 .

[20]  Viktor Andersson,et al.  Folded reflective tandem polymer solar cell doubles efficiency , 2007 .

[21]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[22]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[23]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.