Fast and precise spectral method for solving pantograph type Volterra integro-differential equations

This paper focuses on studying a general form of pantograph type Volterra integro-differential equations (PVIDEs). We apply a new collocation spectral approach, based on shifted Chebyshev polynomials, for converting such PVIDEs into systems of algebraic equations. In addition, we apply the new spectral approach for systems of pantograph type Volterra integro-differential equations (SPVIDEs). We investigate the error analysis of the proposed numerical approach. Also, we present some comparisons with other spectral approaches for clarifying the superiority of the new spectral approach.

[1]  Nicola Guglielmi,et al.  Asymptotic stability properties of T-methods for the pantographs equation , 1997 .

[2]  J. A. Tenreiro Machado,et al.  An Efficient Operational Matrix Technique for Multidimensional Variable-Order Time Fractional Diffusion Equations , 2016 .

[3]  A. Iserles,et al.  Stability of the discretized pantograph differential equation , 1993 .

[4]  Hermann Brunner,et al.  Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays , 2009 .

[5]  Ali H. Bhrawy,et al.  Numerical algorithm for the variable-order Caputo fractional functional differential equation , 2016 .

[6]  Mehmet Sezer,et al.  Laguerre matrix method with the residual error estimation for solutions of a class of delay differential equations , 2014 .

[7]  S. S. Ezz-Eldien,et al.  A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems , 2014 .

[8]  Eid H. Doha,et al.  Numerical Treatments for Volterra Delay Integro-differential Equations , 2009, Comput. Methods Appl. Math..

[9]  Suayip Yüzbasi,et al.  Laguerre approach for solving pantograph-type Volterra integro-differential equations , 2014, Appl. Math. Comput..

[10]  Ahmed A. El-Kalaawy,et al.  Numerical Simulation and Convergence Analysis of Fractional Optimization Problems With Right-Sided Caputo Fractional Derivative , 2018 .

[11]  Yanping Chen,et al.  Legendre Spectral Collocation Methods for Pantograph Volterra Delay-Integro-Differential Equations , 2012, J. Sci. Comput..

[12]  Hui Li,et al.  Numerical stability of higher-order derivative methods for the pantograph equation , 2012, Appl. Math. Comput..

[13]  J. A. Tenreiro Machado,et al.  Legendre–Gauss–Lobatto collocation method for solving multi-dimensional Fredholm integral equations , 2016 .

[14]  J. Miller Numerical Analysis , 1966, Nature.

[15]  António M. Lopes,et al.  On spectral methods for solving variable-order fractional integro-differential equations , 2018 .

[16]  Xiangfan Piao,et al.  A Chebyshev Collocation Method for Stiff Initial Value Problems and Its Stability , 2011 .

[17]  Wansheng Wang,et al.  Nonlinear stability and asymptotic stability of implicit Euler method for stiff Volterra functional differential equations in Banach spaces , 2008, Appl. Math. Comput..

[18]  Samer S. Ezz-Eldien On solving systems of multi-pantograph equations via spectral tau method , 2018, Appl. Math. Comput..

[19]  Francesco Aldo Costabile,et al.  Stability of Chebyshev collocation methods , 2004 .

[20]  Ishtiaq Ali,et al.  Spectral methods for pantograph-type differential and integral equations with multiple delays , 2009 .

[21]  Jingjun Zhao,et al.  Legendre-Gauss collocation methods for nonlinear neutral delay differential equations , 2015 .

[22]  Dumitru Baleanu,et al.  The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion equation , 2014 .

[23]  Z. W. Yang,et al.  Asymptotical Stability of Numerical Methods with Constant Stepsize for Pantograph Equations , 2005 .

[24]  Mehdi Dehghan,et al.  Application of the Decomposition Method of Adomian for Solving the Pantograph Equation of Order m , 2010 .

[25]  Lie-jun Xie,et al.  A new computational approach for the solutions of generalized pantograph-delay differential equations , 2017, Computational and Applied Mathematics.

[26]  Ali H. Bhrawy,et al.  An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Subdiffusion and Reaction Subdiffusion Equations , 2015 .

[27]  Mehmet Sezer,et al.  A collocation approach for the numerical solution of certain linear retarded and advanced integrodifferential equations with linear functional arguments , 2011 .

[28]  Mehmet Sezer,et al.  Residual correction of the Hermite polynomial solutions of the generalized pantograph equations , 2015 .

[29]  Higinio Ramos,et al.  A family of A-stable Runge–Kutta collocation methods of higher order for initial-value problems , 2007 .

[30]  M. A. Abdelkawy,et al.  Efficient Spectral Collocation Algorithm for a Two-Sided Space Fractional Boussinesq Equation with Non-local Conditions , 2016 .

[31]  Mehmet Sezer,et al.  A Taylor polynomial approach for solving generalized pantograph equations with nonhomogenous term , 2008, Int. J. Comput. Math..

[32]  Yunqing Huang,et al.  Spectral-Collocation Methods for Fractional Pantograph Delay-Integrodifferential Equations , 2013 .

[33]  Azzeddine Bellour,et al.  Numerical solution of delay integro‐differential equations by using Taylor collocation method , 2014 .

[34]  M. Zarebnia,et al.  SINC NUMERICAL SOLUTION FOR THE VOLTERRA INTEGRO-DIFFERENTIAL EQUATION , 2010 .

[35]  Yuan Zhang,et al.  Stability of continuous Runge–Kutta-type methods for nonlinear neutral delay-differential equations , 2009 .

[36]  Wansheng Wang,et al.  Convergence of Runge-Kutta methods for neutral Volterra delay-integro-differential equations , 2009 .

[37]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[38]  John Ockendon,et al.  The dynamics of a current collection system for an electric locomotive , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[40]  Dumitru Baleanu,et al.  A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations , 2015 .

[41]  Yang Xu,et al.  Sinc numerical solution for pantograph Volterra delay-integro-differential equation , 2017, Int. J. Comput. Math..

[42]  Ran Zhang,et al.  Collocation Methods for General Volterra Functional Integral Equations with Vanishing Delays , 2011, SIAM J. Scientific Computing.

[43]  Mehdi Dehghan,et al.  A Legendre collocation method for fractional integro-differential equations , 2011 .

[44]  A. H. BHRAWY,et al.  A PSEUDOSPECTRAL METHOD FOR SOLVING THE TIME-FRACTIONAL GENERALIZED HIROTA–SATSUMA COUPLED KORTEWEG–DE VRIES SYSTEM , 2017 .

[45]  Shoufu Li,et al.  Stability Analysis of Theta-Methods for Nonlinear Neutral Functional Differential Equations , 2008, SIAM J. Sci. Comput..

[46]  Mehdi Dehghan,et al.  Application of the collocation method for solving nonlinear fractional integro-differential equations , 2014, J. Comput. Appl. Math..

[47]  Haitao Ma,et al.  Stability of linear time‐periodic delay‐differential equations via Chebyshev polynomials , 2004 .

[48]  Damian Trif,et al.  Direct operatorial tau method for pantograph-type equations , 2012, Appl. Math. Comput..

[49]  M. Zaky A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations , 2018 .

[50]  Hong Su,et al.  Stability and convergence of the two parameter cubic spline collocation method for delay differential equations , 2011, Comput. Math. Appl..

[51]  Ali H. Bhrawy,et al.  A new operational approach for solving fractional variational problems depending on indefinite integrals , 2018, Commun. Nonlinear Sci. Numer. Simul..