Intensively connected spin glasses: towards a replica-symmetry-breaking solution of the ground state

The authors propose a one-step replica-symmetry-breaking solution for spin glasses with finite connectivity. The introduction of two effective field distributions, one for each level of hierarchy, greatly simplifies the problem of manipulating an infinite set of order parameters. They then demonstrate the existence of a replica-symmetry-breaking solution more optimal than the replica-symmetric one and in better agreement with simulation results.

[1]  P. Mottishaw,et al.  Replica Symmetry Breaking and the Spin-Glass on a Bethe Lattice , 1987 .

[2]  Wuwell Liao Replica symmetric solutions of the graph-bipartitioning problem with fixed, finite valence , 1988 .

[3]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[4]  M. Mézard,et al.  Replica symmetry breaking and the nature of the spin glass phase , 1984 .

[5]  Liao,et al.  Graph bipartitioning problem. , 1987, Physical review letters.

[6]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[7]  A. Bray,et al.  Phase diagrams for dilute spin glasses , 1985 .

[8]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[9]  P. Mottishaw,et al.  Replica symmetry breaking in weak connectivity systems , 1987 .

[10]  P. Anderson,et al.  Application of statistical mechanics to NP-complete problems in combinatorial optimisation , 1986 .

[11]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[12]  D. Sherrington,et al.  Graph bipartitioning and spin glasses on a random network of fixed finite valence , 1987 .

[13]  D. Sherrington,et al.  Graph bipartitioning and statistical mechanics , 1987 .

[14]  M. Mézard,et al.  Mean-field theory of randomly frustrated systems with finite connectivity , 1987 .

[15]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[16]  Giorgio Parisi,et al.  Toward a mean field theory for spin glasses , 1979 .

[17]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  P. Mottishaw,et al.  On the stability of randomly frustrated systems with finite connectivity , 1987 .

[20]  M. Mézard,et al.  Nature of the Spin-Glass Phase , 1984 .

[21]  Kanter,et al.  Mean-field theory of spin-glasses with finite coordination number. , 1987, Physical review letters.

[22]  G. Parisi,et al.  Magnetic properties of spin glasses in a new mean field theory , 1980 .

[23]  D. Sherrington,et al.  Graph partitioning and dilute spin glasses: the minimum cost solution , 1988 .

[24]  D. Thouless,et al.  Spin-glass on a Bethe lattice. , 1986, Physical review letters.