Sparse Grid Quadrature Rules Based on Conformal Mappings

In this work, we demonstrate the extension of quadrature approximations, built from conformal mapping of interpolatory rules, to sparse grid quadrature in the multidimensional setting. In one dimension, computation of an integral involving an analytic function using these transformed quadrature rules can improve the convergence rate by a factor approaching π∕2 versus classical interpolatory quadrature (Hale and Trefethen, SIAM J Numer Anal 46:930–948, 2008). For the computation of high-dimensional integrals with analytic integrands, we implement the transformed quadrature rules in the sparse grid setting, and we show that in certain settings, the convergence improvement can be exponential with growing dimension. Numerical examples demonstrate the benefits and drawbacks of the approach, as predicted by the theory.

[1]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[2]  Henry E. Fettis Note on the computation of Jacobi's nome and its inverse , 2005, Computing.

[3]  Vilmos Totik,et al.  Lebesgue constants for Leja points , 2010 .

[4]  P. Favati,et al.  Bounds on the error of fejer and clenshaw-curtis type quadrature for analytic functions , 1993 .

[5]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[6]  Fabio Nobile,et al.  Computers and Mathematics with Applications Convergence of Quasi-optimal Stochastic Galerkin Methods for a Class of Pdes with Random Coefficients , 2022 .

[7]  H. Woźniakowski,et al.  Is Gauss quadrature optimal for analytic functions? , 1985 .

[8]  Vladimir Rokhlin,et al.  High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .

[9]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[10]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[11]  Michael Griebel,et al.  Dimension-adaptive sparse grid quadrature for integrals with boundary singularities , 2014 .

[12]  Guannan Zhang,et al.  Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients , 2015, Numerische Mathematik.

[13]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[14]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[15]  Masatake Mori,et al.  An IMT-Type Double Exponential Formula for Numerical Integration , 1978 .

[16]  Akil C. Narayan,et al.  Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..

[17]  J. Boyd Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms , 2004 .

[18]  Guannan Zhang,et al.  On the Lebesgue constant of weighted Leja points for Lagrange interpolation on unbounded domains , 2016, IMA Journal of Numerical Analysis.

[19]  V. Rokhlin,et al.  Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .

[20]  G. Beylkin,et al.  Wave propagation using bases for bandlimited functions , 2005 .

[21]  Sheehan Olver,et al.  On The Use of Conformal Maps for the Acceleration of Convergence of the Trapezoidal Rule and Sinc Numerical Methods , 2014, SIAM J. Sci. Comput..

[22]  Masatake Mori,et al.  Quadrature formulas obtained by variable transformation , 1973 .

[23]  Clayton G. Webster,et al.  A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions , 2016, Comput. Math. Appl..

[24]  Jan S. Hesthaven,et al.  Spectral Methods Based on Prolate Spheroidal Wave Functions for Hyperbolic PDEs , 2005, SIAM J. Numer. Anal..

[25]  K. Petras Gaussian Versus Optimal Integration of Analytic Functions , 1998 .

[26]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[27]  M. Götz,et al.  Optimal quadrature for analytic functions , 2001 .

[28]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[29]  Michael Griebel,et al.  On tensor product approximation of analytic functions , 2016, J. Approx. Theory.

[30]  Dan Kosloff,et al.  A modified Chebyshev pseudospectral method with an O(N –1 ) time step restriction , 1993 .

[31]  Lloyd N. Trefethen,et al.  New Quadrature Formulas from Conformal Maps , 2008, SIAM J. Numer. Anal..

[32]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .