Sparse Grid Quadrature Rules Based on Conformal Mappings
暂无分享,去创建一个
[1] David M. Miller,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[2] Henry E. Fettis. Note on the computation of Jacobi's nome and its inverse , 2005, Computing.
[3] Vilmos Totik,et al. Lebesgue constants for Leja points , 2010 .
[4] P. Favati,et al. Bounds on the error of fejer and clenshaw-curtis type quadrature for analytic functions , 1993 .
[5] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[6] Fabio Nobile,et al. Computers and Mathematics with Applications Convergence of Quasi-optimal Stochastic Galerkin Methods for a Class of Pdes with Random Coefficients , 2022 .
[7] H. Woźniakowski,et al. Is Gauss quadrature optimal for analytic functions? , 1985 .
[8] Vladimir Rokhlin,et al. High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .
[9] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[10] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[11] Michael Griebel,et al. Dimension-adaptive sparse grid quadrature for integrals with boundary singularities , 2014 .
[12] Guannan Zhang,et al. Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients , 2015, Numerische Mathematik.
[13] Vladimir Rokhlin,et al. Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .
[14] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[15] Masatake Mori,et al. An IMT-Type Double Exponential Formula for Numerical Integration , 1978 .
[16] Akil C. Narayan,et al. Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..
[17] J. Boyd. Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms , 2004 .
[18] Guannan Zhang,et al. On the Lebesgue constant of weighted Leja points for Lagrange interpolation on unbounded domains , 2016, IMA Journal of Numerical Analysis.
[19] V. Rokhlin,et al. Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .
[20] G. Beylkin,et al. Wave propagation using bases for bandlimited functions , 2005 .
[21] Sheehan Olver,et al. On The Use of Conformal Maps for the Acceleration of Convergence of the Trapezoidal Rule and Sinc Numerical Methods , 2014, SIAM J. Sci. Comput..
[22] Masatake Mori,et al. Quadrature formulas obtained by variable transformation , 1973 .
[23] Clayton G. Webster,et al. A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions , 2016, Comput. Math. Appl..
[24] Jan S. Hesthaven,et al. Spectral Methods Based on Prolate Spheroidal Wave Functions for Hyperbolic PDEs , 2005, SIAM J. Numer. Anal..
[25] K. Petras. Gaussian Versus Optimal Integration of Analytic Functions , 1998 .
[26] A. G. Greenhill,et al. Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .
[27] M. Götz,et al. Optimal quadrature for analytic functions , 2001 .
[28] Bradley K. Alpert,et al. Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..
[29] Michael Griebel,et al. On tensor product approximation of analytic functions , 2016, J. Approx. Theory.
[30] Dan Kosloff,et al. A modified Chebyshev pseudospectral method with an O(N –1 ) time step restriction , 1993 .
[31] Lloyd N. Trefethen,et al. New Quadrature Formulas from Conformal Maps , 2008, SIAM J. Numer. Anal..
[32] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .