Generalized Adams–Bashforth time integration schemes for a semi‐Lagrangian model employing the second‐derivative form of the horizontal momentum equations
暂无分享,去创建一个
[1] A. Priestley. A Quasi-Conservative Version of the Semi-Lagrangian Advection Scheme , 1993 .
[2] Edward N. Lorenz,et al. AN N-CYCLE TIME-DIFFERENCING SCHEME FOR STEPWISE NUMERICAL INTEGRATION , 1971 .
[3] Lance M. Leslie,et al. An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .
[4] L. Leslie,et al. Three-Dimensional Mass-Conserving Semi-Lagrangian Scheme Employing Forward Trajectories , 1995 .
[5] G. A. Mills,et al. The BMRC Regional Data Assimilation System , 1990 .
[6] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[7] J. S. Sawyer. A semi-Lagrangian method of solving the vorticity advection equation , 1963 .
[8] W. Bourke,et al. A Nonlinear Vertical Mode Initialization Scheme for a Limited Area Prediction Model , 1983 .
[9] André Robert,et al. A stable numerical integration scheme for the primitive meteorological equations , 1981 .
[10] J. Lambert. Computational Methods in Ordinary Differential Equations , 1973 .
[11] A. Wiin-Nielsen,et al. On the Application of Trajectory Methods in Numerical Forecasting , 1959 .
[12] Dale R. Durran,et al. The Third-Order Adams-Bashforth Method: An Attractive Alternative to Leapfrog Time Differencing , 1991 .
[13] David Burridge,et al. Stability of the Semi-Implicit Method of Time Integration , 1978 .
[14] C. W. Gear,et al. Numerical initial value problem~ in ordinary differential eqttations , 1971 .
[15] D. Burridge,et al. A split semi‐implict reformulation of the Bushby‐Timpson 10‐level model , 1975 .
[16] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[17] T. N. Krishnamurti,et al. Numerical Integration of Primitive Equations by a Quasi-Lagrangian Advective Scheme , 1962 .
[18] R. J. Purser,et al. A Semi-Implicit, Semi-Lagrangian Finite-Difference Scheme Using Hligh-Order Spatial Differencing on a Nonstaggered Grid , 1988 .
[19] A. Simmons,et al. Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .
[20] Miodrag Rančić. An Efficient, Conservative, Monotonic Remapping for Semi-Lagrangian Transport Algorithms , 1995 .
[21] R. J. Purser,et al. High-Order Numerics in an Unstaggered Three-Dimensional Time-Split Semi-Lagrangian Forecast Model , 1991 .
[22] G. Mellor,et al. A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .
[23] L. Leslie,et al. An Efficient Semi-Lagrangian Scheme Using Third-Order Semi-Implicit Time Integration and Forward Trajectories , 1994 .
[24] J. Bates,et al. Multiply-Upstream, Semi-Lagrangian Advective Schemes: Analysis and Application to a Multi-Level Primitive Equation Model , 1982 .
[25] Andrew Staniforth,et al. A mass-conserving semi-Lagrangian scheme for the shallow-water equations , 1994 .
[26] Wayne H. Schubert,et al. Multigrid methods for elliptic problems: a review , 1986 .
[27] N. A. Phillips,et al. A COORDINATE SYSTEM HAVING SOME SPECIAL ADVANTAGES FOR NUMERICAL FORECASTING , 1957 .