Recombination at textured silicon surfaces passivated with silicon dioxide

This work was funded by an Australian Research Council Linkage Grant between the Australian National University, SierraTherm Production Furnaces, and SunPower Corporation.

[1]  A. Stesmans,et al.  Thermally induced interface degradation in (100) and (111) Si/SiO2 analyzed by electron spin resonance , 1998 .

[2]  W. Sinke,et al.  Alkaline Etching for Reflectance Reduction in Multicrystalline Silicon Solar Cells , 2004 .

[3]  D. B. Lee Anisotropic Etching of Silicon , 1969 .

[4]  Mark Kerr,et al.  Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide , 2001 .

[5]  Wilhelm Warta,et al.  Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si‐SiO2 interface , 1992 .

[6]  T. Ishihara,et al.  Investigation of Acidic Texturization for Multicrystalline Silicon Solar Cells , 1999 .

[7]  Rajesh Kumar,et al.  Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions , 2001 .

[8]  E. Yablonovitch Statistical ray optics , 1982 .

[9]  Mojtaba Kahrizi,et al.  On hillocks generated during anisotropic etching of Si in TMAH , 1996 .

[10]  R. Castagné,et al.  Description of the SiO2Si interface properties by means of very low frequency MOS capacitance measurements , 1971 .

[11]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[12]  B. L. Sopori,et al.  Reflection characteristics of textured polycrystalline silicon substrates for solar cells , 1988 .

[13]  James Jungho Pak,et al.  Experiments on anisotropic etching of Si in TMAH , 2001 .

[14]  Alain Fave,et al.  Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching , 2006 .

[15]  W. Füssel,et al.  Defects at the Si/SiO2 interface: Their nature and behaviour in technological processes and stress , 1996 .

[16]  Jeffrey E. Cotter,et al.  Minimizing lifetime degradation associated with thermal oxidation of upright randomly textured silicon surfaces , 2006 .

[17]  P. Maddalena,et al.  Angle-dependent reflectance measurements on photovoltaic materials and solar cells , 1999 .

[18]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[19]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[20]  Dong Chen,et al.  Surface texturing of crystalline silicon and effective area measurement , 2000, International Conference on Thin Film Physics and Applications.

[21]  F. Yun,et al.  Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells , 1997 .

[22]  Thomas Lauinger,et al.  Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation , 1996 .

[23]  K. McIntosh,et al.  Calibration of the WCT‐100 photoconductance instrument at low conductance , 2008 .

[24]  A. Heuberger,et al.  Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .

[25]  R. Einhaus,et al.  Improved anisotropic etching process for industrial texturing of silicon solar cells , 1999 .

[26]  F. Huster,et al.  Industrially attractive front contact formation methods for mechanically V-textured multicrystalline silicon solar cells , 2002 .

[27]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[28]  Armin G. Aberle,et al.  Crystalline silicon solar cells : advanced surface passivation and analysis , 1999 .

[29]  J. Meindl,et al.  Optimization of the Hydrazine‐Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology , 1975 .

[30]  M. Bijker,et al.  Textured silicon surface passivation by high‐rate expanding thermal plasma deposited SiN and thermal SiO2/SiN stacks for crystalline silicon solar cells , 2008 .

[31]  A. Goetzberger,et al.  Crystalline Silicon Solar Cells , 1998 .

[32]  Martin A. Green,et al.  Twenty‐four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss , 1995 .

[33]  M. Green,et al.  Optical properties of intrinsic silicon at 300 K , 1995 .

[34]  A. Evans,et al.  Oxidation induced stresses and some effects on the behavior of oxide films , 1983 .

[35]  Y. Nishimoto,et al.  Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions , 2000 .

[36]  John H. Wohlgemuth,et al.  Buried contact solar cells , 1993, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[37]  A. Cuevas,et al.  Application of junction capacitance measurements to the characterization of solar cells , 2006, IEEE Transactions on Electron Devices.

[38]  Richard M. Swanson,et al.  Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency , 1990 .

[39]  Jürgen Schumacher,et al.  Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters , 2002 .

[40]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[41]  A. Weeber,et al.  Influence of the high-temperature “firing” step on high-rate plasma deposited silicon nitride films used as bulk passivating antireflection coatings on silicon solar cells , 2003 .

[42]  O. Tabata,et al.  Anisotropic etching of silicon in TMAH solutions , 1992 .