A 0.18 $\mu {\rm m}$ Biosensor Front-End Based on $1/f$ Noise, Distortion Cancelation and Chopper Stabilization Techniques

This paper presents a novel sensor front-end circuit that addresses the issues of 1/f noise and distortion in a unique way by using canceling techniques. The proposed front-end is a fully differential transimpedance amplifier (TIA) targeted for current mode electrochemical biosensing applications. In this paper, we discuss the architecture of this canceling based front-end and the optimization methods followed for achieving low noise, low distortion performance at minimum current consumption are presented. To validate the employed canceling based front-end, it has been realized in a 0.18 μm CMOS process and the characterization results are presented. The front-end has also been tested as part of a complete wireless sensing system and the cyclic voltammetry (CV) test results from electrochemical sensors are provided. Overall current consumption in the front-end is 50 μA while operating on a 1.8 V supply.

[1]  Refet Firat Yazicioglu,et al.  A 60 $\mu$W 60 nV/$\surd$Hz Readout Front-End for Portable Biopotential Acquisition Systems , 2007, IEEE Journal of Solid-State Circuits.

[2]  G A Jullien,et al.  A Wireless-Implantable Microsystem for Continuous Blood Glucose Monitoring , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[3]  W. Sansen Challenges in analog IC design submicron CMOS technologies , 1996, 1996 IEEE-CAS Region 8 Workshop on Analog and Mixed IC Design. Proceedings.

[4]  E. Vittoz,et al.  Charge-Based MOS Transistor Modeling , 2006 .

[5]  Yusuf Leblebici,et al.  Robust microelectrodes developed for improved stability in electrochemical characterization of biomolecular layers , 2010, 2010 IEEE Sensors.

[6]  K.L. Shepard,et al.  Active CMOS Sensor Array for Electrochemical Biomolecular Detection , 2008, IEEE Journal of Solid-State Circuits.

[7]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[8]  Kofi A. A. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier With a Gain Error Reduction Loop and 0.06% Untrimmed Gain Error , 2011, IEEE J. Solid State Circuits.

[9]  Willy Sansen,et al.  analog design essentials , 2011 .

[10]  J.G. Harris,et al.  A time-based VLSI potentiostat for ion current measurements , 2006, IEEE Sensors Journal.

[11]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[12]  Eric A. M. Klumperink,et al.  Generating all two-MOS-transistor amplifiers leads to new wide-band LNAs , 2000, IEEE J. Solid State Circuits.

[13]  D. Schmitt-Landsiedel,et al.  A 24x16 CMOS-Based Chronocoulometric DNA Microarray , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[14]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[15]  Christian Enz,et al.  Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design , 2006 .

[16]  D. Ruffieux,et al.  A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18 /spl mu/m CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[17]  Arjang Hassibi,et al.  A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[18]  Yannis Tsividis,et al.  Frequency-Dynamic Range-Power , 2002 .

[19]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[20]  John G. Harris,et al.  VLSI potentiostat for amperometric measurements for electrolytic reactions , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[21]  Christian C. Enz,et al.  Noise canceling chopper stabilized front-end for electrochemical biosensors with improved dynamic range , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[22]  Chao Yang,et al.  Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[23]  W.M.C. Sansen,et al.  A micropower low-noise monolithic instrumentation amplifier for medical purposes , 1987 .

[24]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[25]  Paul Hasler,et al.  A Low-Power, Compact, Adaptive Logarithmic Transimpedance Amplifier Operating Over Seven Decades of Current , 2007, IEEE Trans. Circuits Syst. I Regul. Pap..

[26]  M. Roham,et al.  A Wireless IC for Time-Share Chemical and Electrical Neural Recording , 2009, IEEE Journal of Solid-State Circuits.

[27]  Gregory T. A. Kovacs,et al.  An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[28]  Gert Cauwenberghs,et al.  16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Robin F. B. Turner,et al.  A CMOS potentiostat for amperometric chemical sensors , 1987 .