A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs

Gallium-nitride power transistor (GaN HEMT) and integrated circuit technologies have matured dramatically over the last few years, and many hundreds of thousands of devices have been manufactured and fielded in applications ranging from pulsed radars and counter-IED jammers to CATV modules and fourth-generation infrastructure base-stations. GaN HEMT devices, exhibiting high power densities coupled with high breakdown voltages, have opened up the possibilities for highly efficient power amplifiers (PAs) exploiting the principles of waveform engineered designs. This paper summarizes the unique advantages of GaN HEMTs compared to other power transistor technologies, with examples of where such features have been exploited. Since RF power densities of GaN HEMTs are many times higher than other technologies, much attention has also been given to thermal management-examples of both commercial “off-the-shelf” packaging as well as custom heat-sinks are described. The very desirable feature of having accurate large-signal models for both discrete transistors and monolithic microwave integrated circuit foundry are emphasized with a number of circuit design examples. GaN HEMT technology has been a major enabler for both very broadband high-PAs and very high-efficiency designs. This paper describes examples of broadband amplifiers, as well as several of the main areas of high-efficiency amplifier design-notably Class-D, Class-E, Class-F, and Class-J approaches, Doherty PAs, envelope-tracking techniques, and Chireix outphasing.

[1]  Lluis Pradell,et al.  FET noise-parameter determination using a novel technique based on 50-/spl Omega/ noise-figure measurements , 1999 .

[2]  Mark Rosker Wide Bandgap Semiconductor Devices and MMICs : A DARPA Perspective , 2005 .

[3]  John W. Palmour,et al.  Technology development for GaN/AlGaN HEMT hybrid and MMIC amplifiers on semi-insulating SiC substrates , 2000, Proceedings 2000 IEEE/ Cornell Conference on High Performance Devices (Cat. No.00CH37122).

[4]  Kye-Ik Jeon,et al.  A frequency dispersion model of GaAs MESFET for large-signal applications , 1997 .

[5]  T. Nakayama,et al.  Improved power performance for a recessed-gate AlGaN-GaN heterojunction FET with a field-modulating plate , 2004, IEEE Transactions on Microwave Theory and Techniques.

[6]  Samuel Cho,et al.  1kW S-band Solid State radar amplifier , 2011, WAMICON 2011 Conference Proceedings.

[7]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[8]  W. Curtice,et al.  A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers , 1985 .

[9]  S. Denbaars,et al.  Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures , 1999 .

[10]  P. J. Tasker,et al.  A novel highly efficient broadband continuous class-F RFPA delivering 74% average efficiency for an octave bandwidth , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[11]  Ira Miller,et al.  Analog behavioral modeling with the Verilog-A language , 1997 .

[12]  C. Weitzel,et al.  RF power amplifiers for wireless communications , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[13]  Thomas J. Brazil,et al.  Class-J RF power amplifier with wideband harmonic suppression , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[14]  James B. Beyer,et al.  MESFET Distributed Amplifier Design Guidelines , 1984 .

[15]  W. R. Curtice,et al.  A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers , 1985, 1985 IEEE MTT-S International Microwave Symposium Digest.

[17]  P. Kangaslahti,et al.  W-Band GaN MMIC with 842 mW output power at 88 GHz , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[18]  Bumman Kim,et al.  Advanced Doherty Architecture , 2010, IEEE Microwave Magazine.

[19]  H. Zirath,et al.  A new empirical nonlinear model for HEMT and MESFET devices , 1992 .

[20]  L.C.N. de Vreede,et al.  A Mixed-Signal Approach Towards Linear and Efficient $N$-Way Doherty Amplifiers , 2007, IEEE Transactions on Microwave Theory and Techniques.

[21]  D.E. Root,et al.  A symmetric and thermally de-embedded nonlinear FET model for wireless and microwave applications , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[22]  Koen Mouthaan,et al.  Load pull analysis of Chireix outphasing class-E power amplifiers , 2009, 2009 Asia Pacific Microwave Conference.

[23]  Andrei Grebennikov,et al.  A high-efficiency 100-W four-stage Doherty GaN HEMT power amplifier module for WCDMA systems , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[24]  L Dunleavy,et al.  Modeling GaN: Powerful but Challenging , 2010, IEEE Microwave Magazine.

[25]  Rudiger Quay,et al.  Gallium Nitride Electronics , 2008 .

[26]  Song Lin,et al.  Development of broadband amplifier based on GaN HEMTs , 2011, WAMICON 2011 Conference Proceedings.

[27]  L. Eastman,et al.  The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs , 2000, IEEE Electron Device Letters.

[28]  U. K. Mishra,et al.  Metalorganic chemical vapor deposition growth of high optical quality and high mobility GaN , 1995 .

[29]  D. Schmelzer,et al.  A GaN HEMT Class F Amplifier at 2 GHz With $>\,$80% PAE , 2006, IEEE Journal of Solid-State Circuits.

[30]  Song Lin,et al.  A 20 W GaN HEMT VHF/UHF Class-D power amplifier , 2011, WAMICON 2011 Conference Proceedings.

[31]  Y.-F. Wu,et al.  An Internally-matched GaN HEMT Amplifier with 550-watt Peak Power at 3.5 GHz , 2006, 2006 International Electron Devices Meeting.

[32]  A high efficiency, high voltage, balanced cascode FET , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[33]  R. Glass,et al.  Status of Large Diameter SiC Crystal Growth for Electronic and Optical Applications , 2000 .

[34]  Umesh K. Mishra,et al.  VERY HIGH BREAKDOWN VOLTAGE AND LARGE TRANSCONDUCTANCE REALIZED ON GAN HETEROJUNCTION FIELD EFFECT TRANSISTORS , 1996 .

[35]  Antonio Lázaro,et al.  FET Noise-Parameter Determination Using a Novel Technique Based on 50-Noise-Figure Measurements , 1999 .

[36]  Jin Joo Choi,et al.  High efficiency Class-E tuned Doherty amplifier using GaN HEMT , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[37]  Norihiko Ui,et al.  A 65 % drain efficiency GaN HEMT with 200 W peak power for 20 V to 65 V envelope tracking base station amplifier , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[38]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[39]  T. Kacprzak,et al.  Computer Calculation of Large-Signal GaAs FET Amplifier Characteristics , 1985 .

[40]  D.E. Root,et al.  Polyharmonic distortion modeling , 2006, IEEE Microwave Magazine.

[41]  Michael S. Shur,et al.  Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates , 1998 .

[42]  S.-A. El-Hamamsy,et al.  Design of high-efficiency RF Class-D power amplifier , 1994 .

[43]  P. Draxler,et al.  High Efficiency Envelope Tracking LDMOS Power Amplifier for W-CDMA , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[44]  Mark P. van der Heijden,et al.  A 19W high-efficiency wide-band CMOS-GaN class-E Chireix RF outphasing power amplifier , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[45]  James S. Speck,et al.  POLARIZATION-INDUCED CHARGE AND ELECTRON MOBILITY IN ALGAN/GAN HETEROSTRUCTURES GROWN BY PLASMA-ASSISTED MOLECULAR-BEAM EPITAXY , 1999 .

[46]  H.A. Hung,et al.  Thermal resistance calculation of AlGaN-GaN devices , 2004, IEEE Transactions on Microwave Theory and Techniques.

[47]  Gianfranco Manes,et al.  A 240W dual-band 870 and 2140 MHz Envelope Tracking GaN PA designed by a probability distribution conscious approach , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[48]  R.A. Pucel,et al.  GaAs FET device and circuit simulation in SPICE , 1987, IEEE Transactions on Electron Devices.

[49]  Eizo Mitani,et al.  An 800-W AlGaN/GaN HEMT for S-band High-Power Application , 2007 .

[50]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[51]  Umesh K. Mishra,et al.  Very-high power density AlGaN/GaN HEMTs , 2001 .

[52]  Steven C. Binari,et al.  H, He, and N implant isolation of n‐type GaN , 1995 .

[53]  R. Coffie,et al.  AlGaN/AlN/GaN high-power microwave HEMT , 2001, IEEE Electron Device Letters.

[54]  Stephen I. Long,et al.  A GaN HEMT Class F Amplifier at 2 GHz With > 80% PAE , 2006, IEEE J. Solid State Circuits.

[55]  W. Pribble,et al.  Thermal analysis and its application to high power GaN HEMT amplifiers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[56]  Christian Fager,et al.  Prediction of IMD in LDMOS transistor amplifiers using a new large-signal model , 2002 .

[57]  Ulrich L. Rohde,et al.  Microwave Circuit Design Using Linear and Nonlinear Techniques: Vendelin/Microwave Circuit Design Using Linear and Nonlinear Techniques , 1990 .

[58]  P.J. Tasker Practical waveform engineering , 2009, IEEE Microwave Magazine.

[59]  L.C.N. de Vreede,et al.  A High-Efficiency 100-W GaN Three-Way Doherty Amplifier for Base-Station Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[60]  Bumman Kim,et al.  Investigation of a Class-J Power Amplifier With a Nonlinear $C_{\rm out}$ for Optimized Operation , 2010, IEEE Transactions on Microwave Theory and Techniques.

[61]  Miroslav Micovic,et al.  W-band, 5W solid-state power amplifier/combiner , 2010, 2010 IEEE MTT-S International Microwave Symposium.