3-point off-shell vertex in scalar QED in arbitrary gauge and dimension

We calculate the complete one-loop off-shell three-point scalar-photon vertex in arbitrary gauge and dimension for scalar quantum electrodynamics. Explicit results are presented for the particular cases of dimensions 3 and 4 both for massive and massless scalars. We then propose nonperturbative forms of this vertex that coincide with the perturbative answer to order e{sup 2}.

[1]  R. Delbourgo,et al.  Transverse vertices in electrodynamics and the gauge technique , 1984 .

[2]  R. Delbourgo Gauge covariant approximations in scalar electrodynamics , 1977 .

[3]  R. Delbourgo The gauge technique , 1979 .

[4]  B. Zumino,et al.  Gauge Dependence of the Wave-Function Renormalization Constant in Quantum Electrodynamics , 1959 .

[5]  R. Bonciani,et al.  Vertex diagrams for the QED form factors at the 2-loop level , 2003 .

[6]  R. Bonciani,et al.  Erratum to: "Vertex diagrams for the QED form factors at the 2-loop level" [Nucl. Phys. B 661 (2003) 289] , 2004 .

[7]  Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[8]  Andrei I. Davydychev,et al.  An approach to the evaluation of three- and four-point ladder diagrams , 1993 .

[9]  A. Salam Renormalizable Electrodynamics of Vector Mesons , 1963 .

[10]  A. Waites Gauge Theories in Three Dimensions , 1994 .

[11]  David J. Gross,et al.  QCD and instantons at finite temperature , 1981 .

[12]  R. Bonciani,et al.  QED vertex form factors at two loops , 2003, hep-ph/0307295.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  A. I. Davydychev,et al.  New results for two-loop off-shell three-point diagrams , 1994, hep-ph/9402223.

[15]  B. Zumino Gauge Properties of Propagators in Quantum Electrodynamics , 1960 .

[16]  T. Chiu,et al.  Analytic properties of the vertex function in gauge theories. I , 1980 .

[17]  J. Fleischer,et al.  Algebraic reduction of one-loop Feynman graph amplitudes , 1999, hep-ph/9907327.

[18]  F. Khanna,et al.  Transverse Ward-Takahashi identity for the fermion boson vertex in gauge theories , 2000 .

[19]  H. S. Green A Pre-Renormalized Quantum Electrodynamics , 1953 .

[20]  Y. Takahashi On the generalized ward identity , 1957 .

[21]  J. C. Ward An Identity in Quantum Electrodynamics , 1950 .

[22]  R. Delbourgo,et al.  Renormalizable Electrodynamics of Scalar and Vector Mesons. II , 1964 .

[23]  A. I. Davydychev Explicit results for all orders of theɛexpansion of certain massive and massless diagrams , 2000 .

[24]  Curtis,et al.  Nonperturbative fermion propagator in massless quenched QED. , 1991, Physical review. D, Particles and fields.

[25]  Nonperturbative dynamics of scalar field theories through the Feynman-Schwinger representation , 2004, nucl-th/0404068.

[26]  S. Okubo The gauge properties of Green’s functions in quantum electrodynamics , 1960 .

[27]  Curtis,et al.  Truncating the Schwinger-Dyson equations: How multiplicative renormalizability and the Ward identity restrict the three-point vertex in QED. , 1990, Physical review. D, Particles and fields.

[28]  A. I. Davydychev General results for massive N‐point Feynman diagrams with different masses , 1992 .

[29]  E. Glover,et al.  Master Integrals For Massless Two-Loop Vertex Diagrams With Three Offshell Legs , 2004, hep-ph/0407343.

[30]  R. Delbourgo,et al.  Infrared behaviour of a gauge covariant approximation , 1977 .

[31]  R. Delbourgo,et al.  Dynamically broken chiral symmetry and the gauge technique , 1980 .

[32]  Pennington Mr,et al.  Nonperturbative study of the fermion propagator in quenched QED in covariant gauges using a renormalizable truncation of the Schwinger-Dyson equation. , 1993 .

[33]  C. N. Parker Introducing transverse vertices into the gauge technique , 1984 .

[34]  R. Delbourgo,et al.  A gauge covariant approximation to quantum electrodynamics , 1977 .