Many Neuronal and Behavioral Impairments in Transgenic Mouse Models of Alzheimer's Disease Are Independent of Caspase Cleavage of the Amyloid Precursor Protein

Previous studies suggested that cleavage of the amyloid precursor protein (APP) at aspartate residue 664 by caspases may play a key role in the pathogenesis of Alzheimer's disease. Mutation of this site (D664A) prevents caspase cleavage and the generation of the C-terminal APP fragments C31 and Jcasp, which have been proposed to mediate amyloid-β (Aβ) neurotoxicity. Here we compared human APP transgenic mice with (B254) and without (J20) the D664A mutation in a battery of tests. Before Aβ deposition, hAPP–B254 and hAPP–J20 mice had comparable hippocampal levels of Aβ1-42. At 2–3 or 5–7 months of age, hAPP–B254 and hAPP–J20 mice had similar abnormalities relative to nontransgenic mice in spatial and nonspatial learning and memory, elevated plus maze performance, electrophysiological measures of synaptic transmission and plasticity, and levels of synaptic activity-related proteins. Thus, caspase cleavage of APP at position D664 and generation of C31 do not play a critical role in the development of these abnormalities.

[1]  D. Bredesen,et al.  Reversal of learning deficits in hAPP transgenic mice carrying a mutation at Asp664: A role for early experience , 2010, Behavioural Brain Research.

[2]  D. Bredesen,et al.  Mechanism of cytotoxicity mediated by the C31 fragment of the amyloid precursor protein. , 2009, Biochemical and biophysical research communications.

[3]  D. Bredesen Neurodegeneration in Alzheimer's disease: caspases and synaptic element interdependence , 2009, Molecular Neurodegeneration.

[4]  L. Mucke,et al.  Epilepsy and cognitive impairments in Alzheimer disease. , 2009, Archives of neurology.

[5]  Marc Tessier-Lavigne,et al.  APP binds DR6 to trigger axon pruning and neuron death via distinct caspases , 2009, Nature.

[6]  L. Mucke,et al.  Neprilysin Overexpression Inhibits Plaque Formation But Fails to Reduce Pathogenic Aβ Oligomers and Associated Cognitive Deficits in Human Amyloid Precursor Protein Transgenic Mice , 2009, The Journal of Neuroscience.

[7]  L. Gan,et al.  Cystatin C-Cathepsin B Axis Regulates Amyloid Beta Levels and Associated Neuronal Deficits in an Animal Model of Alzheimer's Disease , 2008, Neuron.

[8]  D. Selkoe,et al.  Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior , 2008, Behavioural Brain Research.

[9]  D. Bredesen,et al.  Long-term prevention of Alzheimer's disease-like behavioral deficits in PDAPP mice carrying a mutation in Asp664 , 2008, Behavioural Brain Research.

[10]  Katrin Marcus,et al.  The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics—Relevance for Alzheimer's disease , 2008, Progress in Neurobiology.

[11]  L. Mucke,et al.  Enkephalin Elevations Contribute to Neuronal and Behavioral Impairments in a Transgenic Mouse Model of Alzheimer's Disease , 2008, The Journal of Neuroscience.

[12]  Isabelle M. Mansuy,et al.  Dendritic Spine Loss and Synaptic Alterations in Alzheimer’s Disease , 2008, Molecular Neurobiology.

[13]  Anatol C. Kreitzer,et al.  Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease , 2007, Neuron.

[14]  L. Mucke,et al.  Accelerating Amyloid-β Fibrillization Reduces Oligomer Levels and Functional Deficits in Alzheimer Disease Mouse Models* , 2007, Journal of Biological Chemistry.

[15]  D. Selkoe,et al.  Aβ Oligomers – a decade of discovery , 2007, Journal of neurochemistry.

[16]  L. Mucke,et al.  Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer's Disease Mouse Model , 2007, Science.

[17]  E. Masliah,et al.  Neuroprotective Effects of Regulators of the Glycogen Synthase Kinase-3β Signaling Pathway in a Transgenic Model of Alzheimer's Disease Are Associated with Reduced Amyloid Precursor Protein Phosphorylation , 2007, The Journal of Neuroscience.

[18]  S. Heinemann,et al.  Deficits in Synaptic Transmission and Learning in Amyloid Precursor Protein (APP) Transgenic Mice Require C-Terminal Cleavage of APP , 2006, The Journal of Neuroscience.

[19]  L. Mucke,et al.  100 Years and Counting: Prospects for Defeating Alzheimer's Disease , 2006, Science.

[20]  D. Bredesen,et al.  Aβ induces cell death by direct interaction with its cognate extracellular domain on APP (APP 597–624) , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  D. Bredesen,et al.  Correction for Galvan et al., Reversal of Alzheimer's-like pathology and behavior in human APP transgenic mice by mutation of Asp664 , 2006, Proceedings of the National Academy of Sciences.

[22]  Mark Bowlby,et al.  Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Gallagher,et al.  A specific amyloid-β protein assembly in the brain impairs memory , 2006, Nature.

[24]  L. Mucke,et al.  Fyn Kinase Induces Synaptic and Cognitive Impairments in a Transgenic Mouse Model of Alzheimer's Disease , 2005, The Journal of Neuroscience.

[25]  Bertrand Z. Yeung,et al.  Vulnerability of Dentate Granule Cells to Disruption of Arc Expression in Human Amyloid Precursor Protein Transgenic Mice , 2005, The Journal of Neuroscience.

[26]  Kefei Chen,et al.  Behavioral phenotypes of amyloid‐based genetically modified mouse models of Alzheimer's disease , 2005, Genes, brain, and behavior.

[27]  G. Laviola,et al.  Aspects of spatial memory and behavioral disinhibition in Tg2576 transgenic mice as a model of Alzheimer’s disease , 2005, Behavioural Brain Research.

[28]  L. Mucke,et al.  Fyn Kinase Modulates Synaptotoxicity, But Not Aberrant Sprouting, in Human Amyloid Precursor Protein Transgenic Mice , 2004, The Journal of Neuroscience.

[29]  O. Vitolo,et al.  Dendrite and dendritic spine alterations in alzheimer models , 2004, Journal of neurocytology.

[30]  M. Mattson,et al.  Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles Intracellular Aβ and Synaptic Dysfunction , 2003, Neuron.

[31]  Jacob Raber,et al.  Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Godaux,et al.  Neuronal Deficiency of Presenilin 1 Inhibits Amyloid Plaque Formation and Corrects Hippocampal Long-Term Potentiation But Not a Cognitive Defect of Amyloid Precursor Protein [V717I] Transgenic Mice , 2002, The Journal of Neuroscience.

[33]  R. Neve,et al.  beta-Secretase cleavage of the amyloid precursor protein mediates neuronal apoptosis caused by familial Alzheimer's disease mutations. , 2001, Brain research. Molecular brain research.

[34]  S. Pimplikar,et al.  The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Griebel,et al.  Measuring normal and pathological anxiety-like behaviour in mice: a review , 2001, Behavioural Brain Research.

[36]  A. Prochiantz,et al.  A Short Cytoplasmic Domain of the Amyloid Precursor Protein Induces Apoptosis In Vitro and In Vivo , 2001, Molecular and Cellular Neuroscience.

[37]  G. Collingridge,et al.  Age-Related Impairment of Synaptic Transmission But Normal Long-Term Potentiation in Transgenic Mice that Overexpress the Human APP695SWE Mutant Form of Amyloid Precursor Protein , 2001, The Journal of Neuroscience.

[38]  Kang Hu,et al.  High-Level Neuronal Expression of Aβ1–42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation , 2000, The Journal of Neuroscience.

[39]  S. Chandra,et al.  A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor , 2000, Nature Medicine.

[40]  David Smith,et al.  Involvement of Caspases in Proteolytic Cleavage of Alzheimer’s Amyloid-β Precursor Protein and Amyloidogenic Aβ Peptide Formation , 1999, Cell.

[41]  R. Neve,et al.  Impairments in learning and memory accompanied by neurodegeneration in mice transgenic for the carboxyl-terminus of the amyloid precursor protein. , 1999, Brain Research. Molecular Brain Research.

[42]  R. Nicoll,et al.  Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Veerle Baekelandt,et al.  Early Phenotypic Changes in Transgenic Mice That Overexpress Different Mutants of Amyloid Precursor Protein in Brain* , 1999, The Journal of Biological Chemistry.

[44]  T. Bliss,et al.  Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice , 1999, Nature Neuroscience.

[45]  K Paliga,et al.  Proteolytic Processing of the Alzheimer’s Disease Amyloid Precursor Protein within Its Cytoplasmic Domain by Caspase-like Proteases* , 1999, The Journal of Biological Chemistry.

[46]  D. Price,et al.  Loss of the Presynaptic Vesicle Protein Synaptophysin in Hippocampus Correlates with Cognitive Decline in Alzheimer Disease , 1997, Journal of neuropathology and experimental neurology.

[47]  R. Motter,et al.  Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease , 1997 .

[48]  L. Mucke,et al.  Levels and Alternative Splicing of Amyloid β Protein Precursor (APP) Transcripts in Brains of APP Transgenic Mice and Humans with Alzheimer's Disease (*) , 1995, The Journal of Biological Chemistry.

[49]  L. Mucke,et al.  Protection against HIV-1 gp120-induced brain damage by neuronal expression of human amyloid precursor protein , 1995, The Journal of experimental medicine.

[50]  L. Mucke,et al.  Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein , 1995, Nature.

[51]  D. Salmon,et al.  Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment , 1991, Annals of neurology.

[52]  J. Delacour,et al.  A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data , 1988, Behavioural Brain Research.

[53]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[54]  G. Aghajanian,et al.  Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices , 1989, Synapse.