Rational Curves on Algebraic Varieties
暂无分享,去创建一个
[1] E. Brieskorn. Ein Satz über die komplexen Quadriken , 1964 .
[2] C. B. Allendoerfer,et al. Hyperbolic manifolds and holomorphic mappings , 1970 .
[3] Shôshichi Kobayashi,et al. Characterizations of complex projective spaces and hyperquadrics , 1973 .
[4] R. Brody,et al. A family of smooth hyperbolic hypersurfaces in $\mathbb{P}_3$ , 1977 .
[5] V. A. Iskovskih. Fano 3-FOLDS. I , 1977 .
[6] Shigefumi Mori,et al. Proj ective manifolds with ample tangent bundles , 1979 .
[7] F. Bogomolov. Holomorphic tensors and vector bundles on projective varieties , 1979 .
[8] S. Yau,et al. Compact kähler manifolds of positive bisectional curvature , 1980 .
[9] Y. Siu. Curvature characterization of hyperquadrics , 1980 .
[10] M. Levine. Deformations of uni-ruled varieties , 1981 .
[11] S. Mukai,et al. Classification of Fano 3-folds with B2≥2 , 1981 .
[12] A. Fujiki. Deformation of Uniruled Manifolds , 1981 .
[13] J. Kollár,et al. Riemann-Roch Type Inequalities , 1983 .
[14] A. Beauville,et al. Variétés Kähleriennes dont la première classe de Chern est nulle , 1983 .
[15] Miles Reid,et al. Young person''s guide to canonical singularities , 1985 .
[16] Y. Miyaoka,et al. A numerical criterion for uniruledness , 1986 .
[17] K. Narain. New Heterotic String Theories in Uncompactified Dimensions < 10 , 1986 .
[18] Y. Miyaoka. The Chern Classes and Kodaira Dimension of a Minimal Variety , 1987 .
[19] Shigefumi Mori,et al. Flip theorem and the existence of minimal models for 3-folds , 1988 .
[20] J. Kollár,et al. Higher dimensional complex geome-try , 1988 .
[21] Y. Miyaoka. Abundance conjecture for 3-folds : case $\nu = 1$ , 1988 .
[22] Yoichi Miyaoka,et al. On the Kodaira dimension of minimal threefolds , 1988 .
[23] E. Viehweg. Weak positivity and the stability of certain Hilbert points , 1990 .
[24] Lorenzo Ramero. Effective estimates for unirationality , 1990 .
[25] A. Nadel. The boundedness of degree of Fano varieties with Picard number one , 1991 .
[26] F. Campana,et al. Connexité rationnelle des variétés de Fano , 1992 .
[27] J. Kollár. Flips and Abundance for Algebraic Threefolds , 1992 .
[28] K. Cho,et al. Projective manifold with the ample vector bundle $^2_\Lambda \mathrm{T_X}$ , 1992 .
[29] J. Kollár,et al. Rational connectedness and bound-edness of Fano manifolds , 1992 .
[30] Yujiro Kawamata,et al. Abundance theorem for minimal threefolds , 1992 .
[31] J. Kollár,et al. Rational curves on Fano varieties , 1992 .
[32] F. Campana,et al. Projective threefolds containing a smooth rational surface with ample normal bundle. , 1993 .
[33] Formal neighbourhoods of a toric variety and unirationality of algebraic varieties , 1994 .
[34] Y. Ruan,et al. A mathematical theory of quantum cohomology , 1994 .
[35] János Kollár,et al. Rational curves on algebraic varieties , 1995, Ergebnisse der Mathematik und ihrer Grenzgebiete.
[36] János Kollár,et al. Rationally Connected Varieties , 1996 .