A Reallocation Algorithm for Online Split Packing of Circles

The Split Packing algorithm is an offline algorithm that packs a set of circles into shapes (triangles and squares) at an optimal packing density. In this paper, we develop an online alternative to Split Packing to handle an online sequence of insertions and deletions, where the algorithm is allowed to reallocate circles into new positions at a cost proportional to their areas. The algorithm can be used to pack circles into squares and right angled triangles. If only insertions are considered, our algorithm is also able to achieve optimal packing density as defined in our paper, with an amortized reallocation cost of $O(c\log \frac{1}{c})$ for squares, and $O(c(1+s^2)\log_{1+s^2}\frac{1}{c})$ for right angled triangles, where $s$ is the ratio of the lengths of the second shortest side to the shortest, when inserting a circle of area $c$. When insertions and deletions are considered, we achieve a packing density of $(1-\epsilon)$ of the optimal, where $\epsilon>0$ can be made arbitrarily small, for an additional amortized reallocation cost of $O(c\frac{1}{\epsilon})$.

[1]  Flávio Keidi Miyazawa,et al.  A bounded space algorithm for online circle packing , 2016, Inf. Process. Lett..

[2]  Marco Locatelli,et al.  Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..

[3]  Sándor P. Fekete,et al.  An efficient data structure for dynamic two-dimensional reconfiguration , 2016, J. Syst. Archit..

[4]  Michael A. Bender,et al.  An adaptive packed-memory array , 2006, TODS.

[5]  Sándor P. Fekete,et al.  Split Packing: Packing Circles into Triangles with Optimal Worst-Case Density , 2017, WADS.

[6]  Michael A. Bender,et al.  Cost-Oblivious Storage Reallocation , 2014, ACM Trans. Algorithms.

[7]  C. Scheffer,et al.  Master ’ s Thesis Split Packing : An Algorithm for Packing Circles with up to Critical Density , 2016 .

[8]  Guochuan Zhang,et al.  Online Removable Square Packing , 2005, Theory of Computing Systems.

[9]  Yossi Azar,et al.  On Two Dimensional Packing , 1996, SWAT.

[10]  Robert J. Lang,et al.  Circle Packing for Origami Design Is Hard , 2010, ArXiv.

[11]  Mhand Hifi,et al.  A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies , 2009, Adv. Oper. Res..

[12]  Leah Epstein,et al.  Optimal online bounded space multidimensional packing , 2004, SODA '04.

[13]  Brian Brubach,et al.  Improved Bound for Online Square-into-Square Packing , 2014, WAOA.

[14]  J. A. George,et al.  Packing different-sized circles into a rectangular container , 1995 .

[15]  J. Januszewski,et al.  On-Line Packing Sequences of Cubes in the Unit Cube , 1997 .

[16]  Sebastian Morr Split Packing: Algorithms for Packing Circles with Optimal Worst-Case Density , 2017, SODA.

[17]  Michael A. Bender,et al.  Maintaining Arrays of Contiguous Objects , 2009, FCT.

[18]  Michael A. Bender,et al.  Reallocation Problems in Scheduling , 2013, Algorithmica.

[19]  Francis Y. L. Chin,et al.  Improved Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing , 2010, ISAAC.

[20]  Leah Epstein,et al.  Online square and cube packing , 2005, Acta Informatica.

[21]  Sándor P. Fekete,et al.  Online Square Packing , 2009, WADS.

[22]  Michael A. Bender,et al.  Cache-oblivious B-trees , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[24]  Klaus Jansen,et al.  Fully dynamic bin packing revisited , 2020, Math. Program..

[25]  Milos Tatarevic On Limits of Dense Packing of Equal Spheres in a Cube , 2015, Electron. J. Comb..

[26]  Eduardo C. Xavier,et al.  Online Circle and Sphere Packing , 2017, Theor. Comput. Sci..