AMBITION – comet nucleus cryogenic sample return

[1]  Nan Liu Presolar Grains , 2021, Oxford Research Encyclopedia of Planetary Science.

[2]  K. Glassmeier,et al.  The Philae lander reveals low-strength primitive ice inside cometary boulders , 2020, Nature.

[3]  N. Thomas,et al.  Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations , 2020, Space Science Reviews.

[4]  N. Thomas,et al.  Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids , 2020, Science.

[5]  S. Erard,et al.  Infrared detection of aliphatic organics on a cometary nucleus , 2020, 2009.14476.

[6]  J. Berthelier,et al.  Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae , 2019, Nature Astronomy.

[7]  Nicolas Thomas,et al.  Towards New Comet Missions , 2019, Space Science Reviews.

[8]  Stephan Ulamec,et al.  A rover for the JAXA MMX Mission to Phobos , 2019 .

[9]  J. Blum,et al.  Homogeneity of 67P/Churyumov-Gerasimenko as seen by CONSERT: implication on composition and formation , 2019, Astronomy & Astrophysics.

[10]  P. Encrenaz,et al.  Long-term monitoring of the outgassing and composition of comet 67P/Churyumov-Gerasimenko with the Rosetta/MIRO instrument , 2019, Astronomy & Astrophysics.

[11]  K. Glassmeier,et al.  Unusually high magnetic fields in the coma of 67P/Churyumov-Gerasimenko during its high-activity phase , 2019, Astronomy & Astrophysics.

[12]  J. Jørgensen,et al.  Ingredients for solar-like systems: protostar IRAS 16293-2422 B versus comet 67P/Churyumov–Gerasimenko , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  F. Scholten,et al.  Images from the surface of asteroid Ryugu show rocks similar to carbonaceous chondrite meteorites , 2019, Science.

[14]  J. Berthelier,et al.  A comparison between the two lobes of comet 67P/Churyumov–Gerasimenko based on D/H ratios in H2O measured with the Rosetta/ROSINA DFMS , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  P. Ehrenfreund,et al.  Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometer scale , 2019, Astronomy & Astrophysics.

[16]  N. Thomas,et al.  Surface Morphology of Comets and Associated Evolutionary Processes: A Review of Rosetta’s Observations of 67P/Churyumov–Gerasimenko , 2019, Space Science Reviews.

[17]  A. Thirouin,et al.  From Centaurs to comets: 40 Years , 2019, The Trans-Neptunian Solar System.

[18]  Helmut Wiesemeyer,et al.  Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets , 2019, Astronomy & Astrophysics.

[19]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[20]  S. Squyres,et al.  The CAESAR New Frontiers Mission: 1. Expected Nature of the Returned Comet Sample , 2019 .

[21]  D. Bodewits,et al.  Solar wind charge exchange in cometary atmospheres , 2019, Astronomy & Astrophysics.

[22]  Tobias Kramer,et al.  Outgassing-induced acceleration of comet 67P/Churyumov-Gerasimenko , 2019, Astronomy & Astrophysics.

[23]  David Kappel,et al.  Comet 67P/CG Nucleus Composition and Comparison to Other Comets , 2019, Space Science Reviews.

[24]  C. Niemann,et al.  Recalling and Updating Research on Diamagnetic Cavities: Experiments, Theory, Simulations , 2019, Front. Astron. Space Sci..

[25]  F. Scholten,et al.  Constraining models of activity on comet 67P/Churyumov-Gerasimenko with Rosetta trajectory, rotation, and water production measurements , 2019, Astronomy & Astrophysics.

[26]  Matthias Hahn,et al.  The Nucleus of comet 67P/Churyumov–Gerasimenko – Part I: The global view – nucleus mass, mass-loss, porosity, and implications , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  Stephan Ulamec,et al.  Development and testing of a pyro-driven launcher for harpoon-based comet sample acquisition , 2018, Acta Astronautica.

[28]  F. Moreno,et al.  The refractory-to-ice mass ratio in comets , 2018, Monthly Notices of the Royal Astronomical Society.

[29]  C. Ceccarelli,et al.  The census of interstellar complex organic molecules in the Class I hot corino of SVS13-A , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  R. Hajra,et al.  Plasma source and loss at comet 67P during the Rosetta mission , 2018, Astronomy & Astrophysics.

[31]  K. Varmuza,et al.  H/C elemental ratio of the refractory organic matter in cometary particles of 67P/Churyumov-Gerasimenko , 2018, Astronomy & Astrophysics.

[32]  P. Hoppe,et al.  Presolar Isotopic Signatures in Meteorites and Comets: New Insights from the Rosetta Mission to Comet 67P/Churyumov–Gerasimenko , 2018, Space science reviews.

[33]  N. Thomas,et al.  Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations , 2018, Astronomy & Astrophysics.

[34]  J. Berthelier,et al.  On the origin of molecular oxygen in cometary comae , 2018, Nature Communications.

[35]  M. Rubin,et al.  Cold electrons at comet 67P/Churyumov-Gerasimenko , 2018, Astronomy & Astrophysics.

[36]  K. Schmidt,et al.  The tensile strength of ice and dust aggregates and its dependence on particle properties , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  C. Walsh,et al.  Linking interstellar and cometary O2: a deep search for 16O18O in the solar-type protostar IRAS 16293–2422 , 2018, Astronomy & Astrophysics.

[38]  H. Leroux,et al.  Ultracarbonaceous Antarctic micrometeorites (UCAMMs): clues for their origin , 2018 .

[39]  J. Blum,et al.  Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula , 2018 .

[40]  Derek C. Richardson,et al.  Catastrophic disruptions as the origin of bilobate comets , 2018, Nature Astronomy.

[41]  Steven W. Squyres,et al.  The CAESAR New Frontiers Mission: 1. Overview , 2018 .

[42]  J. Blum Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals , 2018, Space Science Reviews.

[43]  S. Debei,et al.  Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs (Corrigendum) , 2017, Astronomy & Astrophysics.

[44]  Katherine E. Johnson,et al.  Exposed H2O-rich areas detected on Ceres with the dawn visible and infrared mapping spectrometer , 2017, Icarus.

[45]  Larry Denneau,et al.  A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.

[46]  E. Dartois,et al.  Dome C UltraCarbonaceous Antarctic MicroMeteorites Infrared and Raman fingerprints , 2017, 1711.00647.

[47]  K. Glassmeier,et al.  Impact of a cometary outburst on its ionosphere Rosetta Plasma Consortium observations of the outburst exhibited by comet 67P/Churyumov-Gerasimenko on 19 February 2016 , 2017 .

[48]  G. Naletto,et al.  CASTAway: An asteroid main belt tour and survey , 2017, Advances in Space Research.

[49]  Roberto Orosei,et al.  The Main Belt Comets and ice in the Solar System , 2017, 1709.05549.

[50]  M. Trieloff,et al.  The Castalia mission to Main Belt Comet 133P/Elst-Pizarro , 2017, Advances in Space Research.

[51]  Martin Rubin,et al.  Isotopic composition of CO 2 in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS , 2017 .

[52]  S. Debei,et al.  Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta , 2017 .

[53]  J. Blum,et al.  Fractal dust constrains the collisional history of comets , 2017 .

[54]  J. De Keyser,et al.  Sulphur isotope mass-independent fractionation observed in comet 67P/Churyumov–Gerasimenko by Rosetta/ROSINA , 2017 .

[55]  K. Varmuza,et al.  Nitrogen to carbon atomic ratio measured by COSIMA in the particles of comet 67P/Churyumov-Gerasimenko , 2017 .

[56]  J. Berthelier,et al.  Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy , 2017 .

[57]  K. Glassmeier,et al.  Evolution of the magnetic field at comet 67P/Churyumov-Gerasimenko , 2017 .

[58]  K. Glassmeier,et al.  Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG , 2017 .

[59]  M. Wieser,et al.  Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA , 2017 .

[60]  J. Bertaux,et al.  Diffuse interstellar bands carriers and cometary organic material , 2017 .

[61]  A. Eriksson,et al.  Rosetta photoelectron emission and solar ultraviolet flux at comet 67P , 2017, 1709.03874.

[62]  Harry Lehto,et al.  Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta , 2017 .

[63]  Urs Mall,et al.  Change of outgassing pattern of 67P/Churyumov–Gerasimenko during the March 2016 equinox as seen by ROSINA , 2017 .

[64]  A. Johansen,et al.  Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles , 2017, 1710.07846.

[65]  Wlodek Kofman,et al.  The Philae lander mission and science overview , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  S. Debei,et al.  Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko , 2017, 1707.06812.

[67]  T. Owen,et al.  D2O and HDS in the coma of 67P/Churyumov–Gerasimenko , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[68]  N. Biver,et al.  The composition of cometary ices , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[69]  S. Debei,et al.  The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations , 2017, 1707.02945.

[70]  S. F. Green,et al.  Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets , 2017, 1707.02133.

[71]  Michael Lange,et al.  MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission , 2017 .

[72]  N. Biver,et al.  Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation , 2017, Monthly Notices of the Royal Astronomical Society.

[73]  H. Balsiger,et al.  Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere , 2017, Science.

[74]  K. Giapis,et al.  Dynamic molecular oxygen production in cometary comae , 2017, Nature Communications.

[75]  G. Cody,et al.  The nature, origin and modification of insoluble organic matter in chondrites, the possibly interstellar source of Earth's C and N. , 2017, Chemie der Erde : Beitrage zur chemischen Mineralogie, Petrographie und Geologie.

[76]  J. Berthelier,et al.  Evidence for depletion of heavy silicon isotopes at comet 67P/Churyumov-Gerasimenko , 2017, 1705.02896.

[77]  S. Debei,et al.  Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past , 2017, Science.

[78]  B. J. Buratti,et al.  The Rosetta mission orbiter science overview: the comet phase , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[79]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[80]  U. Fink,et al.  Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko , 2016, Science.

[81]  S. Debei,et al.  Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature , 2016, Science.

[82]  Anny,et al.  Fractal cometary dust – a window into the early Solar system , 2016 .

[83]  E. Grün,et al.  Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view , 2016 .

[84]  C. Pilorget,et al.  Origin of the local structures at the Philae landing site and possible implications on the formation and evolution of 67P/Churyumov–Gerasimenko , 2016 .

[85]  E. Palomba,et al.  Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals , 2016 .

[86]  W. Benz,et al.  How primordial is the structure of comet 67P? - Combined collisional and dynamical models suggest a late formation , 2016, 1611.02604.

[87]  P. Drossart,et al.  Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko - as observed by Rosetta OSIRIS and VIRTIS instruments , 2016 .

[88]  J. Lasue,et al.  Cosmochemical implications of CONSERT permittivity characterization of 67P/CG , 2016 .

[89]  N. Biver,et al.  Evolution of water production of 67P/Churyumov-Gerasimenko: an empirical model and a multi-instrument study , 2016 .

[90]  S. Debei,et al.  Summer fireworks on comet 67P , 2016, 1609.07743.

[91]  E. Grün,et al.  High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko , 2016, Nature.

[92]  S. Erard,et al.  Detection of exposed H₂O ice on the nucleus of comet 67P/Churyumov-Gerasimenko , 2016, 1609.00551.

[93]  C. Walsh,et al.  Cometary ices in forming protoplanetary disc midplanes , 2016, 1607.07861.

[94]  S. Erard,et al.  Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer , 2016 .

[95]  Tobias Kramer,et al.  ON THE ORIGIN OF INNER COMA STRUCTURES OBSERVED BY ROSETTA DURING A DIURNAL ROTATION OF COMET 67P/CHURYUMOV–GERASIMENKO , 2016, 1607.03825.

[96]  T. Owen,et al.  Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko , 2016, Science Advances.

[97]  Giuseppe Piccioni,et al.  Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations , 2016 .

[98]  B. Marty,et al.  Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission , 2016 .

[99]  S. Erard,et al.  The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase , 2016, 1602.09098.

[100]  S. Debei,et al.  Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag , 2016 .

[101]  J. Blum,et al.  Comet formation in collapsing pebble clouds. What cometary bulk density implies for the cloud mass and dust-to-ice ratio , 2016, 1601.05726.

[102]  U. Fink,et al.  Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko , 2016, Nature.

[103]  J. Halekas,et al.  Surface charging and electrostatic dust acceleration at the nucleus of comet 67P during periods of low activity , 2015 .

[104]  S. Debei,et al.  Are fractured cliffs the source of cometary dust jets ? insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko , 2015, 1512.03193.

[105]  John R. Brophy,et al.  Asteroid Redirect Mission Concept: A Bold Approach for Utilizing Space Resources , 2015 .

[106]  S. Debei,et al.  The primordial nucleus of comet 67P/Churyumov-Gerasimenko , 2015 .

[107]  Giampiero Naletto,et al.  OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments , 2015 .

[108]  M. Horányi,et al.  Negatively charged nano-grains at 67P/Churyumov-Gerasimenko , 2015 .

[109]  J. Berthelier,et al.  Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS - Implications for nucleus heterogeneity? , 2015 .

[110]  J. De Keyser,et al.  Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[111]  Ludmilla Kolokolova,et al.  Cometary Science with the James Webb Space Telescope , 2015, 1510.05878.

[112]  D. Lis,et al.  Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy) , 2015, Science Advances.

[113]  S. Debei,et al.  Two independent and primitive envelopes of the bilobate nucleus of comet 67P , 2015, Nature.

[114]  S. Erard,et al.  The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[115]  P. Armitage Physical Processes in Protoplanetary Disks , 2015, Saas-Fee Advanced Course.

[116]  Frances Westall,et al.  Astrobiology and the Possibility of Life on Earth and Elsewhere… , 2015, Space Science Reviews.

[117]  T. Gombosi,et al.  Observation of charged nanograins at comet 67P/Churyumov‐Gerasimenko , 2015 .

[118]  D. Plettemeier,et al.  Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar , 2015, Science.

[119]  M. Banaszkiewicz,et al.  Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[120]  Hideyo Kawakita,et al.  Cometary Isotopic Measurements , 2015 .

[121]  Hans Rickman,et al.  Comets as collisional fragments of a primordial planetesimal disk , 2015, 1504.04512.

[122]  E. Grün,et al.  DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO , 2015 .

[123]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[124]  S. Debei,et al.  The morphological diversity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[125]  U. Fink,et al.  The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta , 2015, Science.

[126]  E. Neefs,et al.  67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio , 2015, Science.

[127]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[128]  E. Kührt,et al.  Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko , 2015, Science.

[129]  M. Zolensky,et al.  Late formation of a comet Wild 2 crystalline silicate particle, Pyxie, inferred from Al–Mg chronology of plagioclase , 2015 .

[130]  J. Wahlund,et al.  ON THE POSSIBILITY OF SIGNIFICANT ELECTRON DEPLETION DUE TO NANOGRAIN CHARGING IN THE COMA OF COMET 67P/CHURYUMOV-GERASIMENKO NEAR PERIHELION , 2015 .

[131]  Stephan Ulamec,et al.  COSAC prepares for sampling and in situ analysis of cometary matter from comet 67P/Churyumov-Gerasimenko , 2014 .

[132]  Larry Denneau,et al.  The main-belt comets: The Pan-STARRS1 perspective , 2014, 1410.5084.

[133]  Donald E. Brownlee,et al.  The Stardust Mission: Analyzing Samples from the Edge of the Solar System , 2014 .

[134]  Laurent Nahon,et al.  ENANTIOMERIC EXCESSES INDUCED IN AMINO ACIDS BY ULTRAVIOLET CIRCULARLY POLARIZED LIGHT IRRADIATION OF EXTRATERRESTRIAL ICE ANALOGS: A POSSIBLE SOURCE OF ASYMMETRY FOR PREBIOTIC CHEMISTRY , 2014 .

[135]  J. P. Moore,et al.  A ring system detected around the Centaur (10199) Chariklo , 2014, Nature.

[136]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[137]  D. Teyssier,et al.  Localized sources of water vapour on the dwarf planet (1) Ceres , 2014, Nature.

[138]  Tokyo Institute of Technology,et al.  Complex organic molecules in protoplanetary disks , 2013, 1403.0390.

[139]  M. Horányi,et al.  DUSTY PLASMA EFFECTS IN COMETS: EXPECTATIONS FOR ROSETTA , 2013 .

[140]  J. Wahlund,et al.  Aerosol growth in Titan’s ionosphere , 2013, Proceedings of the National Academy of Sciences.

[141]  M. Burchell,et al.  THE ABUNDANCE OF PRESOLAR GRAINS IN COMET 81P/WILD 2 , 2013 .

[142]  C. Ceccarelli,et al.  Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models , 2012 .

[143]  C. Floss,et al.  Amoeboid olivine aggregates (AOAs) in the Efremovka, Leoville and Vigarano (CV3) chondrites: A record of condensate evolution in the solar nebula , 2012 .

[144]  T. Tyliszczak,et al.  INCORPORATION OF A LATE-FORMING CHONDRULE INTO COMET WILD 2 , 2011, 1112.3943.

[145]  J. Wahlund,et al.  Dusty plasma in the vicinity of Enceladus , 2011 .

[146]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[147]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[148]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[149]  H. Melosh,et al.  EPOXI at Comet Hartley 2 , 2011, Science.

[150]  T. Hyde,et al.  CHARGING AND COAGULATION OF DUST IN PROTOPLANETARY PLASMA ENVIRONMENTS , 2011, 1104.5677.

[151]  M. Gounelle The Asteroid–Comet Continuum: In Search of Lost Primitivity , 2011 .

[152]  Tomoaki Matsumoto,et al.  The origin and formation of the circumstellar disc , 2010, 1008.0920.

[153]  H. Leroux,et al.  Extreme Deuterium Excesses in Ultracarbonaceous Micrometeorites from Central Antarctic Snow , 2010, Science.

[154]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[155]  D. Brownlee,et al.  Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission , 2009, Science.

[156]  G. Cody,et al.  Ultra-primitive interplanetary dust particles from the comet 26P/Grigg–Skjellerup dust stream collection , 2009 .

[157]  C. Dullemond,et al.  The outcome of protoplanetary dust growth: pebbles, boulders or planetesimals? , 2009, 1001.0488.

[158]  F. Ciesla Dynamics of high‐temperature materials delivered by jets to the outer solar nebula , 2009 .

[159]  Stephan Ulamec,et al.  Landing Strategies for Small Bodies Missions - Philae and beyond , 2009 .

[160]  S. F. Green,et al.  Triple F—a comet nucleus sample return mission , 2009 .

[161]  Stephan Ulamec,et al.  Capabilities of Philae, the Rosetta Lander , 2008 .

[162]  L. Nittler,et al.  Combined micro‐Raman, micro‐infrared, and field emission scanning electron microscope analyses of comet 81P/Wild 2 particles collected by Stardust , 2008 .

[163]  M. Chi,et al.  Comparison of Comet 81P/Wild 2 Dust with Interplanetary Dust from Comets , 2008, Science.

[164]  A. Boss Mixing in the solar nebula: Implications for isotopic heterogeneity and large-scale transport of refractory grains , 2008, 0801.1622.

[165]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[166]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[167]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[168]  A. Davis,et al.  Calcium-Aluminum-rich Inclusions: Major Unanswered Questions , 2005 .

[169]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[170]  Ralph E. Pudritz,et al.  Outflows and Jets from Collapsing Magnetized Cloud Cores , 2005, astro-ph/0508374.

[171]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[172]  M. Podolak,et al.  A note on the snow line in protostellar accretion disks , 2004 .

[173]  Alan E. Rubin,et al.  Chemical, Mineralogical and Isotopic Properties of Chondrules: Clues to Their Origin , 2004 .

[174]  K. Keil,et al.  Amoeboid olivine aggregates and related objects in carbonaceous chondrites: records of nebular and asteroid processes , 2004 .

[175]  Larry R. Nittler,et al.  Astrophysics with Presolar Stardust , 2004 .

[176]  R. H. Brown,et al.  Observations of Comet 19P/Borrelly by the Miniature Integrated Camera and Spectrometer Aboard Deep Space 1 , 2002, Science.

[177]  D. Gautier,et al.  Turbulent Radial Mixing in the Solar Nebula as the Source of Crystalline Silicates in Comets , 2000 .

[178]  W. Cochran,et al.  N+2 and CO+ in Comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale–Bopp) , 2000, astro-ph/0003122.

[179]  E. Herbst,et al.  Deuterium Fractionation in Protoplanetary Disks , 1999 .

[180]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[181]  R. Bachiller BIPOLAR MOLECULAR OUTFLOWS FROM YOUNG STARS AND PROTOSTARS , 1996 .

[182]  F. Shu,et al.  Toward an Astrophysical Theory of Chondrites , 1996, Science.

[183]  Gerhard H. Schwehm,et al.  Challenges of the rosetta sample return mission , 1994 .

[184]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[185]  D. Brownlee,et al.  CHON as a component of dust from comet Halley , 1992, Nature.

[186]  Jochen Kissel,et al.  Aspects of the major element composition of Halley's dust , 1988, Nature.

[187]  Cesare Barbieri,et al.  First Halley Multicolour Camera imaging results from Giotto , 1986 .

[188]  Y. Langevin,et al.  Composition of comet Halley dust particles from Vega observations , 1986 .

[189]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[190]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[191]  J. Oró,et al.  Comets and the Formation of Biochemical Compounds on the Primitive Earth , 1961, Nature.

[192]  N. Thomas,et al.  Cometary Dust , 2018, Space science reviews.

[193]  R. Kirk,et al.  THE CAESAR NEW FRONTIERS MISSION: 3. TAG SITE SELECTION AND CAMERA SUITE , 2018 .

[194]  M. Hilchenbach,et al.  Characterization of the refractory organic matter present in the dust particles of 67P/Churyumov-Gerasimenko , 2016 .

[195]  J. Blum,et al.  Comet formation in collapsing pebble clouds , 2016 .

[196]  A. Fitzsimmons,et al.  MarcoPolo-R: Near-Earth Asteroid sample return mission selected for the assessment study phase of the ESA program cosmic vision , 2016 .

[197]  J. Berthelier,et al.  Rosetta mission results pre-perihelion Special feature Solar wind sputtering of dust on the surface of 67 P / Churyumov-Gerasimenko , 2015 .

[198]  P. Spurný,et al.  Meteorites from the Outer Solar System , 2008 .

[199]  W. Delamere,et al.  The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model , 2007 .

[200]  G. J. Flynn,et al.  The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles , 2006 .

[201]  C. Woodward,et al.  Mg-Rich Silicate Crystals in Comet Hale–Bopp: ISM Relics or Solar Nebula Condensates? , 2000 .

[202]  Walter F. Huebner,et al.  Simulation Experiments with Cometary Analogous Material , 1998 .

[203]  C. Cosmovici,et al.  Comets and life on the primitive Earth , 1997 .

[204]  P. Andre',et al.  From T Tauri stars to protostars: Circumstellar material and young stellar objects in the rho Ophiuchi cloud , 1994 .

[205]  T. Cravens THEORY AND OBSERVATIONS OF COMETARY IONOSPHERES , 1987 .

[206]  F. R. Krueger,et al.  Composition of comet Halley dust particles from Giotto observations , 1986 .

[207]  Yann Alibert,et al.  Astronomy Astrophysics Letter to the Editor Photophoresis as a source of hot minerals in comets , 2022 .

[208]  Th. Henning,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Episodic Formation of Cometary Material in the Outburst of a Young Sun-like Star Protoplanetary Disk Structures in Ophiuchus , 2022 .