Near ambient pressure X-ray photoelectron - and impedance spectroscopy study of NiO - Ce 0.9 Gd 0.1 O 2-δ anode reduction using a novel dual-chamber spectroelectrochemical cell

[1]  M. Ferraro,et al.  The role of Gadolinia Doped Ceria support on the promotion of CO2 methanation over Ni and NiFe catalysts , 2017 .

[2]  Peter Sjöblom,et al.  The SPECIES beamline at the MAX IV Laboratory: a facility for soft X-ray RIXS and APXPS , 2017, Journal of synchrotron radiation.

[3]  K. Friedrich,et al.  Evaluation of the Effect of Sulfur on the Performance of Nickel/Gadolinium‐Doped Ceria Based Solid Oxide Fuel Cell Anodes , 2016, ChemSusChem.

[4]  S. Jiang,et al.  Origin of low frequency inductive impedance loops of O2 reduction reaction of solid oxide fuel cells , 2016 .

[5]  V. Kharton,et al.  Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: Estimate using Raman scattering technique , 2016, Russian Journal of Electrochemistry.

[6]  G. Pantaleo,et al.  Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects , 2016 .

[7]  S. Jiang,et al.  Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration. , 2016, ACS applied materials & interfaces.

[8]  M. Mogensen,et al.  Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers , 2016, Nature Energy.

[9]  M. Hävecker,et al.  Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[10]  B. Münch,et al.  3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance , 2015, Materials.

[11]  P. Gasser,et al.  3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability , 2015, Materials.

[12]  M. Kiskinova,et al.  An in situ near-ambient pressure X-ray Photoelectron Spectroscopy study of Mn polarised anodically in a cell with solid oxide electrolyte , 2015 .

[13]  Meilin Liu,et al.  An operando surface enhanced Raman spectroscopy (SERS) study of carbon deposition on SOFC anodes. , 2015, Physical chemistry chemical physics : PCCP.

[14]  V. Kharton,et al.  Analysis of Interfacial Processes at the SOFC Electrodes by In-Situ Raman Spectroscopy , 2015 .

[15]  Y. Polyak,et al.  XPS and factor analysis study of initial stages of cerium oxide growth on polycrystalline tungsten , 2015 .

[16]  Mogens Bjerg Mogensen,et al.  Need for In Operando Characterization of Electrochemical Interface Features , 2015 .

[17]  Naoki Shikazono,et al.  Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles , 2014 .

[18]  Kazunori Sato,et al.  Effects of NiO/GDC Ratios and Additives on Electrical Properties of SOFC Anodes , 2014 .

[19]  A. Virkar,et al.  A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy , 2014 .

[20]  C. Ludwig,et al.  Redox dynamics of sulphur with Ni/GDC anode during SOFC operation at mid- and low-range temperatures: An operando S K-edge XANES study , 2013 .

[21]  C. Laberty‐Robert,et al.  Reduction of NiO to Ni in Nanocrystalline Composite NiO/Ce0.9Gd0.1O2-δPorous Thin Films: Microstructure Evolution Through in Situ Impedance Spectroscopy , 2013 .

[22]  G. Jackson,et al.  Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells. , 2013, Journal of the American Chemical Society.

[23]  A. McDaniel,et al.  Oxidation stages of Ni electrodes in solid oxide fuel cell environments. , 2013, Physical chemistry chemical physics : PCCP.

[24]  K. Yamaji,et al.  Oxide Component in the Nickel Base Cermet Anode: Its Effect on the Performance of SOFCs , 2013 .

[25]  M. Kiskinova,et al.  In-situ photoelectron microspectroscopy during the operation of a single-chamber SOFC , 2012 .

[26]  G. Jackson,et al.  Multielement Activity Mapping and Potential Mapping in Solid Oxide Electrochemical Cells through the use of operando XPS , 2012 .

[27]  Aïcha Hessler-Wyser,et al.  A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode , 2012, Membranes.

[28]  J. Knudsen,et al.  The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab , 2012, Journal of synchrotron radiation.

[29]  G. Peraudeau,et al.  An XPS investigation of (La2O3)1‐x (CeO2)2x (ZrO2)2 compounds , 2012 .

[30]  A. Hagen,et al.  Spectroelectrochemical cell for in situ studies of solid oxide fuel cells. , 2012, Journal of synchrotron radiation.

[31]  C. H. Bhosale,et al.  Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites , 2012 .

[32]  Meilin Liu,et al.  Rational SOFC material design: new advances and tools , 2011 .

[33]  Roger L. Farrow,et al.  In Situ Characterization of Ceria Oxidation States in High-Temperature Electrochemical Cells with Ambient Pressure XPS , 2010 .

[34]  Zahid Hussain,et al.  Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. , 2010, Nature materials.

[35]  Rafal E. Dunin-Borkowski,et al.  In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope , 2010 .

[36]  Harumi Yokokawa,et al.  Sulfur Poisoning on SOFC Ni Anodes: Thermodynamic Analyses within Local Equilibrium Anode Reaction Model , 2010 .

[37]  S. Ramanathan,et al.  Transference Numbers for In‐Plane Carrier Conduction in Thin Film Nanostructured Gadolinia‐Doped Ceria Under Varying Oxygen Partial Pressure , 2009 .

[38]  San Ping Jiang,et al.  Electrocatalytic Promotion of Palladium Nanoparticles on Hydrogen Oxidation on Ni/GDC Anodes of SOFCs via Spillover , 2009 .

[39]  M. Biesinger,et al.  X‐ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems , 2009 .

[40]  F. Aldinger,et al.  Study of gadolinia-doped ceria solid electrolyte surface by XPS , 2009 .

[41]  F. Aldinger,et al.  Synthesis and reactivity study of gadolinia doped ceria-nickel : A potential anode material for solid oxide fuel cell , 2008 .

[42]  Mogens Bjerg Mogensen,et al.  A Method to Separate Process Contributions in Impedance Spectra by Variation of Test Conditions , 2007 .

[43]  Nishant M. Tikekar,et al.  Reduction and Reoxidation Kinetics of Nickel-Based SOFC Anodes , 2006 .

[44]  Y. Tamenori,et al.  Violation of the Franck-Condon principle due to recoil effects in high energy molecular core-level photoionization. , 2005, Physical review letters.

[45]  Douglas G. Ivey,et al.  Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes , 2005 .

[46]  Weiping Zhou,et al.  Influence of an electrostatic potential at the metal/electrolyte interface on the electron binding energy of adsorbates as probed by X-ray photoelectron spectroscopy , 2004 .

[47]  Peter Claus,et al.  On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis , 2003 .

[48]  Mogens Bjerg Mogensen,et al.  Progress in understanding SOFC electrodes , 2002 .

[49]  C. Hsu,et al.  Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance , 2001 .

[50]  J. Bozek,et al.  Vibrational structure and partial rates of resonant Auger decay of the N 1s-->2π core excitations in nitric oxide , 2001 .

[51]  Mogens Bjerg Mogensen,et al.  Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .

[52]  S. Overbury,et al.  Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces , 1998 .

[53]  M. G. Cook,et al.  X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper , 1975 .

[54]  E. Ilton,et al.  Multiplet splitting for the XPS of heavy elements: Dependence on oxidation state , 2016 .

[55]  F. S. Torknik,et al.  Effect of microstructure refinement on performance of Ni/Ce0.8Gd0.2O1.9 anodes for low temperature solid oxide fuel cell , 2014 .

[56]  P. Luches,et al.  Interfacial interaction between cerium oxide and silicon surfaces , 2013 .

[57]  P. Möller,et al.  Influence of Microstructural Parameters of LSC Cathodes on the Oxygen Reduction Reaction Parameters , 2012 .

[58]  P. Möller,et al.  Influence of Graphite Pore Forming Agents on the Structural and Electrochemical Properties of Porous Ni-CGO Anode , 2012 .

[59]  S. Chan,et al.  Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell , 2010 .

[60]  M. Viviani,et al.  Inductance correction in impedance studies of solid oxide fuel cells , 2009 .

[61]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[62]  R. Hance,et al.  X-Ray photoelectron study of the reaction of oxygen with cerium , 1980 .