Integral representation and relaxation of convex local functionals on $BV(\Omega )$
暂无分享,去创建一个
[1] R. Temam,et al. Problèmes mathématiques en plasticité , 1983 .
[2] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[3] G. Anzellotti,et al. Pairings between measures and bounded functions and compensated compactness , 1983 .
[4] R. Tyrrell Rockafellar,et al. Convex Integral Functionals and Duality , 1971 .
[5] Gianni Dal Maso,et al. Integral representation on BV(ω) of Γ-limits of variational integrals , 1979 .
[6] Necessary and sufficient conditions for the lower semicontinuity of certain integral functionals , 1988, ANNALI DELL UNIVERSITA DI FERRARA.
[7] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[8] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .
[9] James Serrin,et al. On the definition and properties of certain variational integrals , 1961 .
[10] G. Bouchitte,et al. Représentation intégrale de fonctionnelles convexes sur un espace de mesures , 1987, ANNALI DELL UNIVERSITA DI FERRARA.
[11] J. Serrin,et al. Sublinear functions of measures and variational integrals , 1964 .
[12] I. Ekeland. Review: C. Castaing and M. Valadier, Convex analysis and measurable multifunctions , 1978 .
[13] H. Attouch. Variational convergence for functions and operators , 1984 .
[14] Giuseppe Buttazzo,et al. Integral representation and relaxation of local functionals , 1985 .
[15] Guy Bouchitté,et al. Integral representation of convex functionals on a space of measures , 1988 .
[16] Giuseppe Buttazzo,et al. Functionals defined on measures and applications to non equi-uniformly elliptic problems , 1991 .
[17] Leon Simon,et al. Lectures on Geometric Measure Theory , 1984 .