Type-2 fuzzy thresholding using GLSC histogram of human visual nonlinearity characteristics.

Image thresholding is one of the most important approaches for image segmentation and it has been extensively used in many image processing or computer vision applications. In this paper, a new image thresholding method is presented using type-2 fuzzy sets based on GLSC histogram of human visual nonlinearity characteristics (HVNC).The traditional GLSC histogram takes the image spatial information into account in a different way from two-dimensional histogram. This work refines the GLSC histogram by embedding HVNC into GLSC histogram. To select threshold based on the redefined GLSC histogram, we employ the type-2 fuzzy set, whose membership function integrates the effect of pixel gray value and local spatial information to membership value. The type-2 fuzzy set is subsequently transformed into a type-1 fuzzy set for fuzziness measure computation via type reduction. Finally, the optimal threshold is obtained by minimizing the fuzziness of the type-1 fuzzy set after an exhaustive search. The experiment on different types of images demonstrates the effectiveness and the robustness of our proposed thresholding technique.

[1]  Joan S. Weszka,et al.  A survey of threshold selection techniques , 1978 .

[2]  John T. Rickard,et al.  Type-2 Fuzzy Sets as Functions on Spaces , 2010, IEEE Transactions on Fuzzy Systems.

[3]  Qing Wang,et al.  Image Thresholding by Maximizing the Index of Nonfuzziness of the 2-D Grayscale Histogram , 2002, Comput. Vis. Image Underst..

[4]  Jerry M. Mendel,et al.  Uncertainty measures for interval type-2 fuzzy sets , 2007, Inf. Sci..

[5]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[6]  C. A. Murthy,et al.  Fuzzy thresholding: mathematical framework, bound functions and weighted moving average technique , 1990, Pattern Recognit. Lett..

[7]  Humberto Bustince,et al.  Image thresholding using restricted equivalence functions and maximizing the measures of similarity , 2007, Fuzzy Sets Syst..

[8]  Ioannis K. Vlachos,et al.  Comment on: "Image thresholding using type II fuzzy sets" , 2008, Pattern Recognit..

[9]  Mao-Jiun J. Wang,et al.  Image thresholding by minimizing the measures of fuzzines , 1995, Pattern Recognit..

[10]  Rui Seara,et al.  Image segmentation by histogram thresholding using fuzzy sets , 2002, IEEE Trans. Image Process..

[11]  R. Yager ON THE MEASURE OF FUZZINESS AND NEGATION Part I: Membership in the Unit Interval , 1979 .

[12]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[13]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[14]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[15]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[16]  Zhiguo Cao,et al.  New entropic thresholding approach using gray-level spatial correlation histogram , 2010 .

[17]  A. D. Brink Thresholding of digital images using two-dimensional entropies , 1992, Pattern Recognit..

[18]  Gurdial Arora,et al.  A thresholding method based on two-dimensional Renyi's entropy , 2004, Pattern Recognit..

[19]  Luigi Cinque,et al.  Image thresholding using fuzzy entropies , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[20]  Hamid R. Tizhoosh,et al.  Image thresholding using type II fuzzy sets , 2005, Pattern Recognit..

[21]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[22]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[23]  Gershon Buchsbaum,et al.  An Analytical Derivation of Visual Nonlinearity , 1980, IEEE Transactions on Biomedical Engineering.

[24]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[25]  Ioannis A. Kakadiaris,et al.  Image segmentation based on fuzzy connectedness using dynamic weights , 2006, IEEE Transactions on Image Processing.

[26]  Jerry Mendel,et al.  Type-2 Fuzzy Sets and Systems: An Overview [corrected reprint] , 2007, IEEE Computational Intelligence Magazine.

[27]  C. V. Jawahar,et al.  Analysis of fuzzy thresholding schemes , 2000, Pattern Recognit..

[28]  C. V. Jawahar,et al.  Investigations on fuzzy thresholding based on fuzzy clustering , 1997, Pattern Recognit..

[29]  Jerry M. Mendel,et al.  Uncertainty measures for general type-2 fuzzy sets , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[30]  Humberto Bustince,et al.  Comment on: "Image thresholding using type II fuzzy sets". Importance of this method , 2010, Pattern Recognit..

[31]  Humberto Bustince,et al.  Automatic Histogram Threshold Using Fuzzy Measures , 2010, IEEE Transactions on Image Processing.

[32]  Azriel Rosenfeld,et al.  Image enhancement and thresholding by optimization of fuzzy compactness , 1988, Pattern Recognit. Lett..

[33]  Prasanna K. Sahoo,et al.  Image thresholding using two-dimensional Tsallis-Havrda-Charvát entropy , 2006, Pattern Recognit. Lett..

[34]  Zhiguo Cao,et al.  Entropic thresholding based on gray-level spatial correlation histogram , 2008, 2008 19th International Conference on Pattern Recognition.

[35]  Humberto Bustince,et al.  Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets , 1996, Fuzzy Sets Syst..

[36]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[37]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..