COMMUTATIVE PSEUDO BE-ALGEBRAS

The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-algebras also hold for commutative pseudo BE-algebras. For example, any finite commutative pseudo BE-algebra is a BE-algebra, and any commutative pseudo BE-algebra is a join-semilattice. Moreover, if a commutative pseudo BE-algebra is a meet-semilattice, then it is a distributive lattice. We define the pointed pseudo-BE algebras, and introduce and study the relative negations on pointed pseudo BE-algebras. Based on the relative negations we construct two closure operators on a pseudo BE-algebra.We also define relative involutive pseudo BE-algebras, we investigate their properties and prove equivalent conditions for a relative involutive pseudo BE-algebra.We define the relative Glivenko property for a relative good pseudo BE-algebra and show that any relativeinvolutive pseudo BE-algebra has the relative Glivenko property.

[1]  Lavinia Corina Ciungu,et al.  Non-commutative Multiple-Valued Logic Algebras , 2013 .

[2]  Antoni Torrens Torrell,et al.  Glivenko like theorems in natural expansions of BCK-logic , 2004, Math. Log. Q..

[3]  R. Borzooei,et al.  Relation between Hilbert Algebras and BE-Algebras , 2013 .

[4]  A. Iorgulescu,et al.  Algebras of Logic as BCK Algebras , 2008 .

[5]  K. Iseki,et al.  ON AXIOM SYSTEMS OF PROPOSITIONAL CALCULI XIV , 1966 .

[6]  S. Ahn,et al.  FILTERS IN COMMUTATIVE BE-ALGEBRAS , 2012 .

[7]  Jan Kühr PSEUDO BCK-SEMILATTICES , 2007 .

[8]  Jiří Rachůnek,et al.  A non-commutative generalization of MV-algebras , 2002 .

[9]  Anatolij Dvurecenskij,et al.  Pseudo equality algebras: revision , 2014, Soft Comput..

[10]  A. Walendziak ON COMMUTATIVE BE-ALGEBRAS , 2009 .

[11]  K. Sik,et al.  ON BE-ALGEBRAS , 2007 .

[12]  Anatolij Dvurecenskij,et al.  Measures, states and de Finetti maps on pseudo-BCK algebras , 2009, Fuzzy Sets Syst..

[13]  Y. Ceven,et al.  Commutative and Bounded BE-algebras , 2013 .

[14]  Rajab Ali Borzooei,et al.  Congruence relations on pseudo BE--algebras , 2014 .

[15]  Yong Ho Yon,et al.  DUAL BCK-ALGEBRA AND MV-ALGEBRA , 2007 .

[16]  Lavinia Corina Ciungu Relative negations in non-commutative fuzzy structures , 2014, Soft Comput..

[17]  Bin Zhao,et al.  Generalized Bosbach and Riečan states based on relative negations in residuated lattices , 2012, Fuzzy Sets Syst..

[18]  K. So,et al.  ON IDEALS AND UPPER SETS IN BE-ALGEBRAS , 2008 .

[19]  Rajab Ali Borzooei,et al.  Distributive Pseudo Be-Algebras , 2015 .

[20]  Afrodita Iorgulescu Classes of pseudo-BCK algebras - Part II , 2006, J. Multiple Valued Log. Soft Comput..

[21]  George Georgescu,et al.  Pseudo-BCK Algebras: An Extension of BCK Algebras , 2001, DMTCS.