Wilsonian renormalization as a quantum channel and the separability of fixed points

We show that the Wilsonian formulation of the renormalization group (RG) defines a quantum channel acting on the momentum-space density matrices of a quantum field theory. This information theoretical property of the RG allows us to derive a remarkable consequence for the vacuum of theories at a fixed point: they have no entanglement between momentum scales. Our result can be understood as deriving from the scale symmetry of such theories and leads to constraints on the form of the ground state and on expectation values of momentum space operators.

[1]  J. van den Brink,et al.  Momentum space entanglement from the Wilsonian effective action , 2022, Physical Review D.

[2]  M. Headrick,et al.  Snowmass white paper: Quantum information in quantum field theory and quantum gravity , 2022, 2203.07117.

[3]  Yaithd D. Olivas,et al.  Holographic coarse-graining: correlators from the entanglement wedge and other reduced geometries , 2022, Journal of High Energy Physics.

[4]  Nima Lashkari,et al.  Renormalization group and approximate error correction , 2021, Physical Review D.

[5]  Nima Lashkari,et al.  Real-space RG, error correction and Petz map , 2020, Journal of High Energy Physics.

[6]  Satoshi Iso,et al.  Wilsonian Effective Action and Entanglement Entropy , 2021, Symmetry.

[7]  S. Iso,et al.  Non-Gaussianity of entanglement entropy and correlations of composite operators , 2021, 2105.02598.

[8]  S. Iso,et al.  Entanglement entropy in scalar field theory and ZM gauge theory on Feynman diagrams , 2021, Physical Review D.

[9]  D. Pontello Aspects of Entanglement Entropy in Algebraic Quantum Field Theory , 2020, 2005.13975.

[10]  Kostas Skenderis,et al.  Conformal n-Point Functions in Momentum Space. , 2019, Physical review letters.

[11]  Arpan Bhattacharyya,et al.  Renormalized Circuit Complexity. , 2019, Physical review letters.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  M. Headrick Lectures on entanglement entropy in field theory and holography , 2019, 1907.08126.

[14]  Jordan S. Cotler,et al.  Entanglement renormalization for weakly interacting fields , 2018, Physical Review D.

[15]  Nima Lashkari Entanglement at a scale and renormalization monotones , 2017, Journal of High Energy Physics.

[16]  T. Nishioka Entanglement entropy: Holography and renormalization group , 2018, Reviews of Modern Physics.

[17]  K. Sanders,et al.  Entanglement Measures and Their Properties in Quantum Field Theory , 2017, 1702.04924.

[18]  R. Myers,et al.  Circuit complexity in quantum field theory , 2017, 1707.08570.

[19]  Onkar Parrikar,et al.  Unitary Networks from the Exact Renormalization of Wave Functionals , 2016, 1609.03493.

[20]  S. Trivedi,et al.  Aspects of entanglement entropy for gauge theories , 2015, 1510.07455.

[21]  M. Van Raamsdonk,et al.  Momentum-space entanglement for interacting fermions at finite density , 2013, Journal of High Energy Physics.

[22]  Kostas Skenderis,et al.  Implications of conformal invariance in momentum space , 2013, 1304.7760.

[23]  Yu Nakayama,et al.  Scale invariance vs conformal invariance , 2013, 1302.0884.

[24]  M. Raamsdonk,et al.  Momentum-space entanglement for interacting fermions at finite density , 2012, 1210.0054.

[25]  A. Donald,et al.  Supplemental Material to , 2013 .

[26]  Vijay Balasubramanian,et al.  Holographic interpretations of the renormalization group , 2012, 1211.1729.

[27]  Sašo Grozdanov,et al.  Wilsonian renormalisation and the exact cut-off scale from holographic duality , 2011, 1112.3356.

[28]  M. Raamsdonk,et al.  Momentum-space entanglement and renormalization in quantum field theory , 2011, 1108.3568.

[29]  W. Marsden I and J , 2012 .

[30]  D. Sheehy,et al.  Quantum critical scaling in graphene. , 2007, Physical review letters.

[31]  J I Cirac,et al.  Renormalization-group transformations on quantum states. , 2004, Physical review letters.

[32]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[33]  D. Buchholz,et al.  Scaling algebras and renormalization group in algebraic quantum field theory , 1995, hep-th/9501063.

[34]  A. Millis,et al.  Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. , 1993, Physical review. B, Condensed matter.

[35]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .

[36]  Shang‐keng Ma The renormalization group and the large n limit , 1974 .

[37]  Franz Wegner,et al.  Some invariance properties of the renormalization group , 1974 .

[38]  L. Infeld Quantum Theory of Fields , 1949, Nature.